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Preface

The normal and Student’s t distributions are two of the most important continuous
probability distributions, and are widely used in statistics and other fields of sci-
ences. The distributions of the sum, product, and ratio of two independent random
variables arise in many fields of research, for example, biology, computer science,
control theory, economics, engineering, genetics, hydrology, medicine, number
theory, statistics, physics, psychology, reliability, risk management, etc. This has
increased the need to explore more statistical results on the sum, product, and ratio
of independent random variables. The aim of this book is to study the Normal and
Student’s t Distributions and Their Applications. First, the distributions of the sum,
product, and ratio of two independent normal random variables, which play an
important role in many areas of research, are presented, and some of the available
results are surveyed. The distributions of the sum, product, and ratio of indepen-
dent Student’s t random variables, which are of interest in many areas of statistics,
are then discussed. The distributions of the sum, product, and ratio of independent
random variables belonging to different families are also of considerable impor-
tance and one of the current areas of research interest. This book introduces and
develops some new results on the distributions of the sum of the normal and
Student’s t random variables. Some properties of these distributions are also dis-
cussed. A new symmetric distribution has been derived by taking the product of
the probability density functions of the normal and Student’s t distributions. Some
characteristics of the new distributions are presented. Before a particular proba-
bility distribution model is applied to fit the real-world data, it is necessary to
confirm whether the given probability distribution satisfies the underlying
requirements by its characterization. Thus, characterization of a probability dis-
tribution plays an important role in probability and statistics. We have also pro-
vided some characterizations of the family of normal and Student’s t distributions.

We hope the findings of the book will be useful for the advanced undergraduate
and graduate students, and practitioners in various fields of sciences.

As a preparation to study this book, the readers are assumed to have knowledge
of calculus and linear algebra. In addition, they need to have taken first courses in
probability and statistical theory.

We wish to express our gratitude to Dr. Chris Tsokos for his valuable sug-
gestions and comments about the manuscript, which certainly improved the quality
and presentation of the book. The first author thanks Z. Karssen and K. Jones of
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Atlantis Press for the interesting discussions at a meeting in Athens, Greece, for
the publication of this book. Summer research grant and sabbatical leave from
Rider University enabled the first author to complete his part of the work. Part of
the book is from the independent study of the third author with Dr. Kibria. The
book was partially written while the second author was on sabbatical in
2010–2011, and he gratefully acknowledges the excellent research facilities of
Florida International University. The third author is grateful to Miami Dade
College for all the support, including STEM grants. Last but not least, the authors
would like to express their deep regret for any error or omission or misprint or
mistake, which is very likely to occur in any textbook of this type. We have
endeavored our best that our book be typo free (which is impossible but our
intention). All suggestions in this regard for improvement in the future are wel-
come, and will be highly appreciated and gratefully acknowledged.
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Chapter 1
Introduction

The normal and Student’s t distributions are two of the most important distributions
in statistics. These distributions have been extensively studied and used by many
researchers since their discoveries. This book reviews the normal and Student’s t
distributions, and their applications. These studies involve some preliminaries on
random variables and distribution functions, which are defined below (in Sect. 1.1),
(for details, see Lukacs 1972, Dudewicz and Mishra 1988, Rohatgi and Saleh 2001,
Severini 2005, andMukhopadhyay 2006, among others). Some special functions and
mathematical results will also be needed, which, for the sake of completeness, are
given below (in Sect. 1.2), (for details, see Abramowitz and Stegun 1970, Lebedev
1972, Prudnikov et al. 1986, and Gradshteyn and Ryzhik 2000, among others).

1.1 Some Preliminaries on Random Variables and Distributions

Definition 1.1.1 (Random Variable): Let (σ, T, P) be a probability space, where
σ = {w} is a set of simple events, T is a σ-algebra of events, and P is a probability
measure defined on (σ, T ). Let B be an element of the Borel σ-algebra of subsets of
the real line R. A randomvariable X = X(w) is defined as a finite single-valued func-
tion X : σ → R such that X− 1 (B) = {w : X (w) ∈ B} ∈ T, ∀ Borel set B ∈ R.
Thus, a random variable X is a real-valued function with domain σ, that is,
X(w) ∈ R = {y : −∞ < y < +∞} , ∀ w ∈ σ.

Definition 1.1.2 (Cumulative Distribution Function): Let B = (−∞, x] in the
above definition 1.1. Then the cumulative distribution function (cdf) or distribu-
tion function (df) of the random variable X = X (w) is defined by FX (x) =
P [X ≤ x], ∀x ∈ (−∞, +∞), with the following properties:

(i) FX (x) is a non-decreasing function of x .
(ii) FX (−∞) = 0, FX (+ ∞) = 1.
(iii) FX (x) is right continuous.

M. Ahsanullah et al., Normal and Student’s t Distributions and Their Applications, 1
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2 1 Introduction

Definition 1.1.3 (Absolutely Continuous Distribution Function): The distribution
function FX (x) of a random variable X is said to be absolutely continuous (with
respect to Lebesgue measure) if ∃ a function fX (x) ≥ 0 such that FX (x) =

x∫

−∞
fX (t)dt .

Definition 1.1.4 (Probability Density Function): The function fX (x) in the above
definition 1.1.3 is called the probability density function (pdf) or density function of
the random variable X if it satisfies the following condition:

∞∫

−∞
fX (x)dx = 1.

Definition 1.1.5 (Moments): If a random variable X has an absolutely continuous
(with respect to Lebesgue measure) distribution with a pdf fX (x), then the nth
moment about zero and the nth central moment of X are respectively defined by the
following expressions:

αn = E
(
Xn) =

∞∫

−∞
xn fX (x)dx,

when

E |X |n =
∞∫

−∞
|x |n fX (x)dx < ∞.

and

βn = E [X − E (X)]n =
∞∫

−∞
(x − E (X))n fX (x)dx,

when

E |X − E (X)|n =
∞∫

−∞
|x − E (X)|n fX (x)dx < ∞.

Note that, in the above definitions, α1 = E (X), and β2 = E [X − E (X)]2 are
respectively called the expected value (or mean or mathematical expectation) and
variance of the random variable X .

Definition 1.1.6 (Entropy): An entropy provides an excellent tool to quantify the
amount of information (or uncertainty) contained in a random observation regarding
its parent distribution (population). A large value of entropy implies the greater
uncertainty in the data. As proposed by Shannon (1948), if a random variable X has
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an absolutely continuous distribution with a pdf fX (x), then the entropy of X is
defined as

HX [ fX (X)] = E[− ln ( fX (X)] = −
∞∫

−∞
fX (x) ln [ fX (x)] dx .

1.2 Some Useful Mathematical Results

The following special functions and mathematical results will be useful in our
analyses.

(a) Special Functions

(i) The series

p Fq
(
α1, α2, . . . , αp; β1, β2, . . . , βq ; z

) =
∞∑

k = 0

{
(α1)k (α2)k · · · (αp

)
k

(β1)k (β2)k · · · (βq
)

k

zk

k!

}

,

is called a generalized hypergeometric series of order (p, q), where (α)k and
(β)k represent Pochhammer symbols and

(x)k = x(x − 1)......(x − k + 1), and (x)0 = 1.

(ii) For p = 1 and q = 2, we have generalized hypergeometric function 1F2 of

order (1, 2), given by 1F2 (α1;β1,β2; z) =
∞∑

k = 0

{
(α1)k

(β1)k (β2)k

zk

k!
}
.

(iii) For p = 2 and q = 1, the series given by

2F1 (α,β; γ; z) ≡ F (α,β; γ; z) ≡ F (β,α; γ; z) =
∞∑

k = 0

{
(α)k (β)k zk

(γ)k k!
}
is

called generalized hypergeometric function 2F1 of order (2, 1). Also, we
have
F (α,β; γ; z) = (1 − z)−β F

(
β, γ − α; γ; z

z − 1

)
.

(iv) For p = 2 and q = 0, the function defined by

ψ (α, γ; z) ≡ z− α
2F0

(
α, 1 + α − γ; −1

z

)
≡ U (α, γ, z)

= 1
π(α)

∞∫

0
e− z t tα − 1(1 + t)γ − α − 1dt, Re (α) > 0

,

(1.1)
is called Kummer’s function. Here Re (α) > 0, Re (z) > 0, (see Prudnikov
et al., 1986, volume 3, equation 7.2.2.7, page 435, or Abramowitz and Stegun,
1970, equation 13.2.5, page 505).
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(v) The function defined by

κ1 (a, b; c; w, z) =
∞∑

k, l = 0

(a)k + l (b)k
(c)k + l

wk zl

(k !) (l !)

= π

[
c
a, c − a

] 1∫

0
ua − 1 (1 − u)c − a − 1(1 − u w) − b eu z du,

(1.2)
where Re (a) , Re (c − a) > 0, |w| < 1, and (a)k denote the Pochhammer
symbol, is called a generalized (or confluent) hypergeometric function of two
variables.

(vi) The integrals given by

π(α) =
∞∫

0

tα − 1e−t dt, α > 0, γ (α, x) =
x∫

0

tα−1e−t dt , and π(α, x) =
∞∫

x

tα−1e−t dt, α > 0,

are called (complete) gamma, incomplete gamma and complementary incom-
plete gamma functions, respectively. Note that π(α, x) + γ (α, x) = π(α).

(vii) The functions definedby er f (x) = 2√
π

x∫

0
e−u2du, and er f c(x) = 2√

π

∞∫
x

e−u2

du = 1− er f (x), are called error and complementary error functions respec-
tively.

(viii) The function defined by B (p, q) =
1∫

0
t p(1 − t)q − 1dt = π(p)π(q)

π(p + q)
,

p > 0, q > 0, is known as beta function (or Euler’s function of the first
kind).

(ix) Struve Function, Hν(x): It is defined as

Hν(x) = 2xν + 1

√
π2ν + 1π(ν + 3/2)

∞∑

k = 0

1

(3/2)k(ν + 3/2)k

(

− x2

4

)k

.

(x) Bessel Function of the First Kind, Jν(x): It is defined as

Jν(x) = xν

2νπ(ν + 1)

∞∑

k = 0

1

(ν + 1)k (k!)
(

− x2

4

)k

.

(xi) Bessel Function of the Second Kind, Yν(x): It is defined as

Yν (x) = cos (νπ) Jν (x) − J−ν (x)

sin (νπ)
,

with Y0(.) interpreted as the limit Y0(x) = lim
ν→0

Yν(x).
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(xii) Modified Bessel Function of the First Kind, Iν(x): It is defined as

Iν(x) = xν

2νπ(ν + 1)

∞∑

k = 0

1

(ν + 1)k (k!)
(

x2

4

)k

.

(xiii) Modified Bessel Function of the second kind (note we need later to find the
pdf of the product of two independent normal random variables). Modified
Bessel function of the Second Kind, Kα(x) is defined as

Kα(x) = Jα(x) cos(αx) − J−α(x)

Sin(αx)
,

where

Jα(x) = (x/2)α

π(α + 1)
αF1(α + 1,− x2

4
).

In the case of integer order n, the function is defined by the limit as non-integer
α tends to n. For n=0

K0(x) = 1

2

∫ ∞

−∞
cos t x√
1 + t2

dt

(xiv) Modified Bessel Function of the Third Kind, Kν(x): It is defined as

Kν(x) = π {I−ν(x) − Iν(x)}
2 sin(νπ)

,

with K0(.) interpreted as the limit K0(x) = lim
ν→0

Kν(x).

(xv) Meijer G-Function: It is defined as

Gm, n
p, q

(
x |a1, ... ,ap

b1, ... ,bq

)
= 1

2πi

∫

L

x−t π(b1 + t) · · · π(bm + t)π(1 − a1 − t) · · ·π(1 − an − t)

π(an + 1 + t) · · · π(ap + t)π(1 − bm + 1 − t) · · · π(1 − bq − t)
dt,

where (e)k = e(e + 1) · · · (e + k − 1) denotes the ascending factorial and L
denotes an integration path (for details onMeijer G-Function, see, Gradshteyn
and Ryzhik (2000), Sect. 9.3, Page 1068).

(xvi) π
(
n + 1

2

) =
√

π(2n)!
22n(n!) , where n > 0 is an integer.

(xvii) For negative values, gamma function can be defined as

π

(

−n + 1

2

)

= (−1)n2n√π

1.3.5. . . . (2n − 1)
,where n > 0 is an integer.
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6 1 Introduction

The organization of this book is as follows. In Chap.2 , some basic ideas, def-
initions and some detailed properties along with applications of the normal dis-
tributions have been presented. Some basic ideas, definitions and some detailed
properties along with applications of the Student’s t distributions have been pre-
sented in Chap.3. Chapter4 presents the distributions of the sum, product and
ratio of normal random variables. In Chap. 5, sum, product and ratio for Stu-
dent’s t random variables have been given. Chapter6 discusses the sum, product
and ratio for random variables X and Y having the normal and Student’s t dis-
tributions respectively and distributed independently of each other. In Chap. 7, a
new symmetric distribution and its properties have been presented by taking the
product of the probability density functions of the normal and Student’s t dis-
tributions for some continuous random variable X. The characterizations of nor-
mal distributions are presented in Chap.8. In Chap.9, we presented the charac-
terizations of Student’s t distribution. Some concluding remarks and some future
research on the sum, product and ration of two random variables are provided in
Chap.10.
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Chapter 2
Normal Distribution

The normal distribution is one of the most important continuous probability
distributions, and is widely used in statistics and other fields of sciences. In this
chapter, we present some basic ideas, definitions, and properties of normal distrib-
ution, (for details, see, for example, Whittaker and Robinson (1967), Feller (1968,
1971), Patel et al. (1976), Patel and Read (1982), Johnson et al. (1994), Evans et
al. (2000), Balakrishnan and Nevzorov (2003), and Kapadia et al. (2005), among
others).

2.1 Normal Distribution

The normal distribution describes a family of continuous probability distributions,
having the same general shape, and differing in their location (that is, the mean or
average) and scale parameters (that is, the standard deviation). The graph of its proba-
bility density function is a symmetric and bell-shaped curve. The development of the
general theories of the normal distributions began with the work of de Moivre (1733,
1738) in his studies of approximations to certain binomial distributions for large
positive integer n > 0. Further developments continued with the contributions of
Legendre (1805),Gauss (1809), Laplace (1812),Bessel (1818, 1838),Bravais (1846),
Airy (1861), Galton (1875, 1889), Helmert (1876), Tchebyshev (1890), Edgeworth
(1883, 1892, 1905), Pearson (1896), Markov (1899, 1900), Lyapunov (1901), Char-
lier (1905), and Fisher (1930, 1931), among others. For further discussions on the
history of the normal distribution and its development, readers are referred to Pear-
son (1967), Patel and Read (1982), Johnson et al. (1994), and Stigler (1999), and
references therein. Also, see Wiper et al. (2005), for recent developments. The nor-
mal distribution plays a vital role in many applied problems of biology, economics,
engineering, financial risk management, genetics, hydrology, mechanics, medicine,
number theory, statistics, physics, psychology, reliability, etc., and has been has been
extensively studied, both from theoretical and applications point of view, by many
researchers, since its inception.

M. Ahsanullah et al., Normal and Student’s t Distributions and Their Applications, 7
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8 2 Normal Distribution

2.1.1 Definition (Normal Distribution)

A continuous random variable X is said to have a normal distribution, with mean μ

and variance σ 2, that is, X → N (μ, σ 2), if its pdf fX (x) and cdf FX (x) = P(X ∈ x)

are, respectively, given by

fX (x) = 1

σ
∀
2π

e−(x−μ)2/2σ 2
, −∞ < x < ∞, (2.1)

and

FX (x) = 1

σ
∀
2π

x∫

−∞
e−(y−μ)2/2σ 2

dy

= 1

2
[1 + er f

(
x − μ

σ
∀
2

)]

, −∞ < x < ∞, −∞ < μ < ∞, σ > 0, (2.2)

where er f (.) denotes error function, and μ and σare location and scale parameters,
respectively.

2.1.2 Definition (Standard Normal Distribution)

A normal distribution with μ = 0 and σ = 1, that is, X → N (0, 1), is called the
standard normal distribution. The pdf fX (x) and cdf FX (x) of X → N (0, 1) are,
respectively, given by

fX (x) = 1∀
2π

e−x 2 /2, −∞ < x < ∞, (2.3)

and

FX (x) = 1∀
2π

x∫

−∞
e−t2/2dt, −∞ < x < ∞,

= 1

2

[

1 + er f

(
x∀
2

)]

, −∞ < x < ∞. (2.4)

Note that if Z → N (0, 1) and X = μ + σ Z , then X → N (μ, σ 2), and conversely
if X → N (μ, σ 2) and Z = (X − μ)/ σ , then Z → N (0, 1). Thus, the pdf of
any general X → N (μ, σ 2) can easily be obtained from the pdf of Z → N (0, 1),
by using the simple location and scale transformation, that is, X = μ + σ Z . To
describe the shapes of the normal distribution, the plots of the pdf (2.1) and cdf (2.2),
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Fig. 2.1 Plots of the normal
pdf, for different values of μ

and σ 2

for different values of μ and σ 2, are provided in Figs. 2.1 and 2.2, respectively, by
using Maple 10. The effects of the parameters, μ and σ 2, can easily be seen from
these graphs. Similar plots can be drawn for other values of the parameters. It is
clear from Fig. 2.1 that the graph of the pdf fX (x) of a normal random variable,
X → N (μ, σ 2), is symmetric about mean, μ, that is fX (μ + x) = fX (μ − x),
−∞ < x < ∞.

2.1.3 Some Properties of the Normal Distribution

This section discusses the mode, moment generating function, cumulants, moments,
mean, variance, coefficients of skewness and kurtosis, and entropy of the normal dis-
tribution, N (μ, σ 2). For detailed derivations of these, see, for example, Kendall and
Stuart (1958), Lukacs (1972), Dudewicz and Mishra (1988), Johnson et al. (1994),
Rohatgi and Saleh (2001), Balakrishnan and Nevzorov (2003), Kapadia et al. (2005),
and Mukhopadhyay (2006), among others.
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Fig. 2.2 Plots of the normal
cdf for different values of μ

and σ 2

2.1.3.1 Mode

The mode or modal value is that value of X for which the normal probability density
function fX (x) defined by (2.1) is maximum. Now, differentiating with respect to x
Eq. (2.1), we have

f ≤
X (x) = −

√
2

π

[
(x − μ) e− (x−μ)2/2σ 2

σ 3

]

,

which, when equated to 0, easily gives the mode to be x = μ, which is the mean,
that is, the location parameter of the normal distribution. It can be easily seen that
f ≤≤
X (x) < 0. Consequently, the maximum value of the normal probability density

function fX (x) from (2.1) is easily obtained as fX (μ) = 1
σ

∀
2 π

. Since f ≤(x) = 0
has one root, the normal probability density function (2.1) is unimodal.

2.1.3.2 Cumulants

The cumulants kr of a random variable X are defined via the cumulant generating
function
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g(t) =
∞∑

r=1

kr
tr

r ! , where g(t) = ln
(
E(etX)

)
.

For some integer r > 0, the r th cumulant of a normal random variable X having the
pdf (2.1) is given by

κr =
⎧
⎨

⎩

μ, when r = 1;
σ 2, when r = 2;
0, when r > 2

2.1.3.3 Moment Generating Function

The moment generating function of a normal random variable X having the pdf (2.1)
is given by (see, for example, Kendall and Stuart (1958), among others)

MX (t) = E
(

et X
)

= etμ + 1
2 t2 σ 2

.

2.1.3.4 Moments

For some integer r > 0, the r th moment about the mean of a normal random variable
X having the pdf (2.1) is given by

E
(
Xr ⎛ = μr =

⎝
σ r (r !)

2
r
2 [(r/2)!]

, for r even;

0, for r odd
(2.5)

We can write μr = σ r (r !!), where m!! = 1.3.5. . ..(m − 1) for m even.

2.1.3.5 Mean, Variance, and Coefficients of Skewness and Kurtosis

From (2.5), the mean, variance, and coefficients of skewness and kurtosis of a normal
random variable X → N (μ, σ 2) having the pdf (2.1) are easily obtained as follows:

(i) Mean:α1 = E (X) = μ;
(ii) Variance: V ar (X) = σ 2, σ > 0;
(iii) Coefficient of Skewness:γ1 (X) = μ3

μ
3/2
2

= 0;

(iv) Coefficient of Kurtosis:γ2 (X) = μ4

μ2
2

= 3.

where μr has been defined in Eq. (2.5).
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Since the coefficient of kurtosis, that is, γ2(X) = 3, it follows that the normal
distributions are mesokurtic distributions.

2.1.3.6 Median, Mean Deviation, and Coefficient of Variation
of X ∼ N(μ, σ 2)

These are given by

(i) Median: μ

(ii) Mean Deviation:
(
2 σ 2

π

) 1
2

(iii) Coefficient of Variation: σ
μ

2.1.3.7 Characteristic Function

The characteristic function of a normal random variable X → N (μ, σ 2) having the
pdf (2.1) is given by (see, for example, Patel et al. (1976), among others)

φX (t) = E
(

eit X
)

= eitμ − 1
2 t2 σ 2

, i = ∀−1.

2.1.3.8 Entropy

For some σ > 0, entropy of a random variable X having the pdf (2.1) is easily given
by

HX [ fX (x)] = E[− ln( fX (X)]

= −
∞∫

−∞
fX (x) ln [ fX (x)] dx,

= ln
(∀

2πeσ
)

(see, for example, Lazo and Rathie (1978), Jones (1979), Kapur (1993), and
Suhir (1997), among others). It can be easily seen that d(HX [ fX (x)])

dσ
> 0, and

d2(HX [ fX (x)])
dσ 2 < 0, ∃σ > 0,∃μ. It follows that that the entropy of a random vari-

able X having the normal pdf (2.1) is a monotonic increasing concave function of
σ > 0, ∃μ. The possible shape of the entropy for different values of the parameter
σ is provided below in Fig. 2.3, by using Maple 10. The effects of the parameter σ

on entropy can easily be seen from the graph. Similar plots can be drawn for others
values of the parameter σ .
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Fig. 2.3 Plot of entropy
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2.1.4 Percentiles

This section computes the percentiles of the normal distribution, by using Maple 10.
For any p(0 < p < 1), the (100p)th percentile (also called the quantile of order p)

of N (μ, σ 2) with the pdf fX (x) is a number z p such that the area under fX (x) to
the left of z p is p. That is, z p is any root of the equation

ς(z p) =
z p∫

−∞
fX (u)du = p.

Using the Maple program, the percentiles z p of N (μ, σ 2) are computed for some
selected values of p for the given values of μ and , which are provided in Table2.1,
when μ = 0 and σ = 1. Table2.1 gives the percentile values of zp for p ≥ 0.5. For
p < 0.5, use 1 − Z1−p.

Table 2.1 Percentiles of
N (0, 1)

p z p

0.5 0.0000000000
0.6 0.2533471031
0.7 0.5244005127
0.75 0.6744897502
0.8 0.8416212336
0.9 1.281551566
0.95 1.644853627
0.975 1.959963985
0.99 2.326347874
0.995 2.575829304
0.9975 2.807033768
0.999 3.090232306
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Suppose X1,X2, . . .Xn are n independent N (0, 1) random variables and M(n) =
max(X1,X2, . . .Xn). It is known (see Ahsanullah and Kirmani (2008) p.15 and
Ahsanullah and Nevzorov (2001) p.92 ) that

P(M(n) ∈ an + bnx) ≡ e−e−x
, for all x as n ≡ ∞.

where an = βn − Dn
2βn

, Dn = ln ln n + ln 4π, βn = (2 ln n)1/2, bn − (2 ln n)−1/2.

2.2 Different Forms of Normal Distribution

This section presents different forms of normal distribution and some of their impor-
tant properties, (for details, see, for example, Whittaker and Robinson (1967), Feller
(1968, 1971), Patel et al. (1976), Patel and Read (1982), Johnson et al. (1994), Evans
et al. (2000), Balakrishnan and Nevzorov (2003), and Kapadia et al. (2005), among
others).

2.2.1 Generalized Normal Distribution

Following Nadarajah (2005a), a continuous random variable X is said to have a

generalized normal distribution, with mean μ and variance
σ 2


(
3
s

)



(
1
s

) , where s > 0,

that is, X → N

⎞

μ,
σ 2


(
3
s

)



(
1
s

)

⎠

, if its pdf fX (x) and cdf FX (x) = P(X ∈ x) are,

respectively, given by

fX (x) = s

2σ

( 1

s

⎛e
−
∣
∣
∣ x−μ

σ

∣
∣
∣
s

, (2.6)

and

FX (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩



(
1
s ,
(

μ − x
σ

)s)

2

(
1
s

) , i f x ∈ μ

1 − 

(
1
s ,
(

x − μ
σ

)s)

2

(
1
s

) , i f x > μ

(2.7)

where −∞ < x < ∞, −∞ < μ < ∞, σ > 0, s > 0, and 
 (a, x) denotes com-
plementary incomplete gamma function defined by 
 (a, x) = ∫∞

x ta − 1 e−t dt .
It is easy to see that the Eq. (2.6) reduces to the normal distribution for s = 2, and
Laplace distribution for s = 1. Further, note that if has the pdf given by (2.6), then
the pdf of the standardized random variable Z = (X − μ)/ σ is given by
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Fig. 2.4 Plots of the general-
ized normal pdf for different
values of s

fZ (z) = s

2

( 1

s

⎛e−|z|s (2.8)

To describe the shapes of the generalized normal distribution, the plots of the pdf
(2.6), for μ = 0, σ = 1, and different values of s, are provided in Fig. 2.4 by using
Maple 10. The effects of the parameters can easily be seen from these graphs. Similar
plots can be drawn for others values of the parameters. It is clear from Fig. 2.4 that
the graph of the pdf fX (x) of the generalized normal random variable is symmetric
about mean, μ, that is

fX (μ + x) = fX (μ − x), −∞ < x < ∞.

2.2.1.1 Some Properties of the Generalized Normal Distribution

This section discusses the mode, moments, mean, median, mean deviation, variance,
and entropy of the generalized normal distribution. For detailed derivations of these,
see Nadarajah (2005).

2.2.1.2 Mode

It is easy to see that the mode or modal value of x for which the generalized normal
probability density function fX (x) defined by (2.6) is maximum, is given by x = μ,
and the maximum value of the generalized normal probability density function (2.6)
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is given by fX (μ) = s

2σ

(
1
s

) . Clearly, the generalized normal probability density

function (2.6) is unimodal.

2.2.1.3 Moments

(i) For some integer r > 0, the r th moment of the generalized standard normal
random variable Z having the pdf (2.8) is given by

E
(
Zr ⎛ = 1 + (−1)r

2

( 1

s

⎛ 


(
r + 1

s

)

(2.9)

(i) For some integer n > 0, the nth moment and the nth central moment of the
generalized normal randomvariable X having the pdf (2.6) are respectively given
by the Eqs. (2.10) and (2.11) below:

E
(
Xn⎛ =

(μn)
n∑

k = 0

(
n
k

)(
σ
μ

)k [
1 + (−1)k

]


( k + 1

s

⎛

2

( 1

s

⎛ (2.10)

and

E
[
(X − μ)n] = (σ n)

[
1 + (−1)n

]


( n + 1

s

⎛

2

( 1

s

⎛ (2.11)

2.2.1.4 Mean, Variance, Coefficients of Skewness and Kurtosis,
Median and Mean Deviation

From the expressions (2.10) and (2.11), the mean, variance, coefficients of skewness
and kurtosis, median and mean deviation of the generalized normal random variable
X having the pdf (2.6) are easily obtained as follows:

(i) Mean: α1 = E (X) = μ;

(ii) Variance: V ar (X) = β2 = σ 2

( 3

s

⎛



( 1

s

⎛ , σ > 0, s > 0;

(iii) Coefficient of Skewness: γ1 (X) = β3

β
3/2
2

= 0;

(iv) Coefficient of Kurtosis: γ2 (X) = β4

β2
2

=


( 1

s

⎛


(
5
s

)

[


( 3

s

⎛]2 , s > 0;
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(v) Median (X) : μ;

(vi) Mean Deviation: E |X − μ| = σ 

( 2

s

⎛



( 1

s

⎛ , s > 0.

2.2.1.5 Renyi and Shannon Entropies, and Song’s Measure of the Shape of the
Generalized Normal Distribution

These are easily obtained as follows, (for details, see, for example, Nadarajah (2005),
among others).

(i) Renyi Entropy:Following Renyi (1961), for some reals γ > 0, γ √= 1,
the entropy of the generalized normal random variable X having the pdf (2.6)
is given by

�R (γ ) = 1

1 − γ
ln

+∞∫

− ∞
[ fX (X)]γ dx

= ln (γ )

s (γ − 1)
− ln

[
s

2σ

( 1

s

⎛

]

, σ > 0, s > 0, γ > 0, γ √= 1.

(ii) Shannon Entropy:Following Shannon (1948), the entropy of the generalized
normal random variable X having the pdf (2.6) is given by

HX [ fX (X)] = E[− ln( fX (X)] = −
∞∫

−∞
fX (x) ln [ fX (x)] dx,

which is the particular case of Renyi entropy as obtained in (i) above for γ ≡
1. Thus, in the limit when γ ≡ 1 and using L’Hospital’s rule, Shannon
entropy is easily obtained from the expression for Renyi entropy in (i) above
as follows:

HX [ fX (X)] = 1

s
− ln

[
s

2σ

( 1

s

⎛

]

, σ > 0, s > 0.

(iii) Song’s Measure of the Shape of a Distribution:Following Song (2001), the
gradient of the Renyi entropy is given by

�≤
R (γ ) = d

dγ

[�R (γ )
] = 1

s

{
1

γ (γ − 1)
− ln (γ )

(γ − 1)2

⎢

(2.12)

which is related to the log likelihood by
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�≤
R (1) = −1

2
V ar [ln f (X)] .

Thus, in the limit when γ ≡ 1 and using L’Hospital’s rule, Song’s measure of the
shape of the distribution of the generalized normal random variable X having the
pdf (2.6) is readily obtained from the Eq. (2.12) as follows:

− 2 �≤
R (1) = 1

s
,

which can be used in comparing the shapes of various densities and measuring
heaviness of tails, similar to the measure of kurtosis.

2.2.2 Half Normal Distribution

Statistical methods dealing with the properties and applications of the half-normal
distribution have been extensively used bymany researchers in diverse areas of appli-
cations, particularly when the data are truncated from below (that is, left truncated,)
or truncated from above (that is, right truncated), among them Dobzhansky and
Wright (1947),Meeusen and van denBroeck (1977), Haberle (1991), Altman (1993),
Buckland et al. (1993) , Chou and Liu (1998), Klugman et al. (1998), Bland and Alt-
man (1999), Bland (2005), Goldar andMisra (2001), Lawless (2003), Pewsey (2002,
2004), Chen and Wang (2004) and Wiper et al. (2005), Babbit et al. (2006), Coffey
et al. (2007), Barranco-Chamorro et al. (2007), and Cooray and Ananda (2008), are
notable.Acontinuous randomvariable X is said to have a (general) half-normal distri-
bution, with parameters μ (location) and σ (scale), that is, X |μ, σ → H N (μ, σ ),
if its pdf fX (x) and cdf FX (x) = P(X ∈ x) are, respectively, given by

fX (x |μ, σ) =
√

2

π

1

σ
e
− 1

2

(
x − μ

σ

)2

, (2.13)

and

FX (x) = er f

(
x − μ∀

2σ

)

(2.14)

where x ≥ μ, −∞ < μ < ∞, σ > 0, and er f (.) denotes error function, (for
details on half-normal distribution and its applications, see, for example, Altman
(1993), Chou and Liu (1998), Bland and Altman (1999), McLaughlin (1999), Wiper
et al. (2005), and references therein). Clearly, X = μ + σ |Z |, where Z →
N (0, 1) has a standard normal distribution. On the other hand, the random variable
X = μ − σ |Z | follows a negative (general) half- normal distribution. In particular,
if X → N

(
0, σ 2

⎛
, then it is easy to see that the absolute value |X | follows a half-

normal distribution, with its pdf f|X |(x) given by
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Fig. 2.5 Plots of the half-
normal pdf

f|X |(x) =

⎧
⎪⎨

⎪⎩

2∀
2π σ

e− 1
2 (

x
σ )

2
i f x ≥ 0

0 i f x < 0

(2.15)

By taking σ 2 = π
2θ2

in the Eq. (2.15), more convenient expressions for the pdf and
cdf of the half-normal distribution are obtained as follows

f|X |(x) =

⎧
⎪⎨

⎪⎩

2θ
π

e
−
(

xθ∀
π

)2

i f x ≥ 0

0 i f x < 0

(2.16)

and

F|X |(x) = er f

(
θx∀
π

)

(2.17)

which are implemented in Mathematica software as HalfNormalDistribution[theta],
see Weisstein (2007). To describe the shapes of the half-normal distribution, the
plots of the pdf (2.13) for different values of the parameters μ and σ are provided
in Fig. 2.5 by using Maple 10. The effects of the parameters can easily be seen from
these graphs. Similar plots can be drawn for others values of the parameters.
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2.2.3 Some Properties of the Half-Normal Distribution

This section discusses some important properties of the half-normal distribution,
X |μ, σ → H N (μ, σ ).

2.2.3.1 Special Cases

The half-normal distribution, X |μ, σ → H N (μ, σ ) is a special case of theAmoroso,
central chi, two parameter chi, generalized gamma, generalized Rayleigh, truncated
normal, and folded normal distributions (for details, see, for example, Amoroso
(1925), Patel and Read (1982), and Johnson et al. (1994), among others). It also
arises as a limiting distribution of three parameter skew-normal class of distributions
introduced by Azzalini (1985).

2.2.3.2 Characteristic Property

If X → N (μ, σ ) is folded (to the right) about its mean, μ, then the resulting
distribution is half-normal, X |μ, σ → H N (μ, σ ).

2.2.3.3 Mode

It is easy to see that themodeormodal value of x forwhich the half-normal probability
density function fX (x) defined by (2.13) is maximum, is given at x = μ, and the
maximum value of the half-normal probability density function (2.13) is given by

fX (μ) = 1
σ

√
2
π
. Clearly, the half-normal probability density function (2.13) is

unimodal.

2.2.3.4 Moments

(i) kth Moment of the Standardized Half-Normal Random Variable: If the
half-normal random variable X has the pdf given by the Eq. (2.13), then the
standardized half-normal random variable |Z | = X − μ

σ
→ H N (0, 1) will

have the pdf given by

f|Z |(z) =
⎝

2∀
2π

e− 1
2 z2 i f z ≥ 0

0 i f z < 0
(2.18)

For some integer k > 0, and using the following integral formula (see
Prudnikov et al. Vol. 1, 1986, Eq. 2.3.18.2, p. 346, or Gradshteyn and Ryzhik
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1980, Eq. 3.381.4, p. 317)

∞∫

0

tα − 1 e− ρ tμ dt = 1

μ
ρ

− α
μ 


(
α

μ

)

, where μ, Re α, Re ρ > 0,

the kth moment of the standardized half-normal random variable Z having the
pdf (2.18) is easily given by

E
(

Zk
)

= 1∀
π

2
k
2 


(
k + 1

2

)

, (2.19)

where 
 (.) denotes gamma function.

(ii) Moment of the Half-Normal Random Variable: For some integer n > 0,
the nth moment (about the origin) of the half-normal random variable X having
the pdf (2.13) is easily obtained as

μ≤
n = E

(
Xn⎛ = E

[
(μ + zσ)n] =

n∑

k = 0

(
n
k

)

μn − k σ k E
(

Zk
)

= 1∀
π

n∑

k = 0

(
n
k

)

2
k
2 μn − k σ k 


(
k + 1

2

)

(2.20)

From the above Eq. (2.20), the first four moments of the half-normal random
variable X are easily given by

μ≤
1 = E [X ] = μ + σ

√
2

π
, (2.21)

μ≤
2 = E

[
X2
]

= μ2 + 2

√
2

π
μσ + σ 2 , (2.22)

μ≤
3 = E

[
X3
]

= μ3 + 3

√
2

π
μ2σ + 3μσ 2 + 2

√
2

π
σ 3 , (2.23)

and

μ≤
4 = E

[
X4
]

= μ4 + 4

√
2

π
μ3σ + 6μ2σ 2 + 8

√
2

π
μσ 3 + 3σ 4. (2.24)

(iii) Central Moment of the Half-Normal Random Variable: For some integer
n > 0, the nth central moment (about the mean μ≤

1 = E (X)) of the half-
normal random variable X having the pdf (2.13) can be easily obtained using
the formula
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μn = E
[(

X − μ≤
1

⎛n] =
n∑

k = 0

(
n
k

)
(−μ≤

1

⎛n − k
E
(

Xk
)

,

(2.25)
where E

(
Xk
⎛ = μ≤

k denotes the kth moment, given by the Eq. (2.20), of the
half-normal random variable X having the pdf (2.13).

Thus, from the above Eq. (2.25), the first three central moments of the half-
normal random variable X are easily obtained as

μ2 = E
[(

X − μ≤
1

⎛2] = μ≤
2 − (

μ≤
1

⎛2 = σ 2 (π − 2)

π
,

μ3 = β3 = E
[(

X − μ≤
1

⎛3] (2.26)

= μ≤
3 − 3μ≤

1μ
≤
2 + 2

(
μ≤
1

⎛3 =
√

2

π

σ 3 (4 − π)

π
, (2.27)

and

μ4 = β4 = E
[(

X − μ≤
1

⎛4] = μ≤
4 − 4μ≤

1μ
≤
3 + 6

(
μ≤
1

⎛2
μ≤
2 − 3

(
μ≤
1

⎛4

= σ 4
(
3π2 − 4π − 12

⎛

π2 . (2.28)

2.2.3.5 Mean, Variance, and Coefficients of Skewness and Kurtosis

These are easily obtained as follows:

(i) Mean : α1 = E (X) = μ + σ

√
2

π
;

(ii) Variance : V ar (X) = μ2 = σ 2
(

1 − 2

π

)

, σ > 0;

(iii) Coefficient of Skewness : γ1 (X) = μ3

μ
3/2
2

=
∀
2 (4 − π)
√

(π − 2)3
≈ 0.9953;

(iv) Coefficient of Kurtosis : γ2 (X) = μ4

μ2
2

= 8 (π − 3)

(π − 2)2
≈ 0.7614;
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2.2.3.6 Median (i.e., 50th Percentile or Second Quartile), and First and Third
Quartiles

These are derived as follows. For any p(0 < p < 1), the (100p)th percentile
(also called the quantile of order p) of the half-normal distribution, X |μ, σ →
H N (μ, σ ), with the pdf fX (x) given by (2.13), is a number z p such that the area
under fX (x) to the left of z p is p. That is, z p is any root of the equation

F(z p) =
z p∫

−∞
fX (t)dt = p. (2.29)

For p = 0.50,we have the 50th percentile, that is, z0.50, which is called the median
(or the second quartile) of the half-normal distribution. For p = 0.25 and p = 0.75,
we have the 25th and 75th percentiles respectively.

2.2.3.7 Derivation of Median(X)

Let m denote the median of the half-normal distribution, X |μ, σ → H N (μ, σ ),
that is, let m = z0.50. Then, from the Eq. (2.29), it follows that

0.50 = F(z0.50) =
z0.50∫

−∞
fX (t)dt =

√
2

π

1

σ

z0.50∫

−∞
e
− 1

2

(
t − μ

σ

)2

dt. (2.30)

Substituting t − μ∀
2 σ

= u in the Eq. (2.30), using the definition of error function, and
solving for z0.50, it is easy to see that

m = Median(X) = z0.50 = μ +
(∀

2
)

er f −1 (0.50) σ

= μ + (
∀
2)(0.476936)σ

≈ μ + 0.6745σ, σ > 0,

where er f −1[0.50] = 0.476936 has been obtained by using Mathematica. Note
that the inverse error function is implemented in Mathematica as a Built-in Symbol,
Inverse Erf[s], which gives the inverse error function obtained as the solution for
z in s = er f (z). Further, for details on Error and Inverse Error Functions, see,
for example, Abramowitz and Stegun (1972, pp. 297–309), Gradshteyn and Ryzhik
(1980), Prudnikov et al., Vol. 2 (1986), and Weisstein (2007), among others.
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2.2.3.8 First and Third Quartiles

Let Q1 and Q3 denote the first and third quartiles of X → H N (μ, σ ), that is, let
Q1 = z0.25 and Q3 = z0.75. Then following the technique of the derivation of the
Median(X) as in 2.2.3.7, one easily gets the Q1 and Q3 as follows.

(i) First Quartile: Q1 = μ − 0.3186σ, σ > 0;
(ii) Third Quartile: Q3 = μ + 1.150σ, σ > 0.

2.2.3.9 Mean Deviations

Following Stuart and Ord, Vol. 1, p. 52, (1994), the amount of scatter in a population
is evidently measured to some extent by the totality of deviations from the mean
and median. These are known as the mean deviation about the mean and the mean
deviation about the median, denoted as δ1 and δ2, respectively, and are defined as
follows:

(i) δ1 =
+∞∫

−∞
|x − E (X)| f (x)dx,

(ii) δ2 =
+∞∫

−∞
|x − M (X)| f (x)dx .

Derivations of δ1 and δ2 for the Half-Normal distribution, X |μ, σ → H N (μ, σ ):
To derive these, we first prove the following Lemma.

Lemma 2.2.1: Let δ = ω−μ
σ

. Then

∫ ∞

μ

1

σ
|x−ω|

√
2

π
e−(1/2)( x−μ

σ
)2dx

= σ

√
2

π

(

−1 − δ

√
π

2
+ e− δ2

2 + δ

√
π

2
er f (

δ∀
2
)

)

,

where er f (z) = ∫z
0

2∀
π

e−t2dt denotes the error function.
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Proof: We have

∫ ∞

μ

1

σ
|x − ω|

√
2

π
e−(1/2)( x−μ

σ
)2dx

=
∫ ∞

μ

|x − μ − (ω − μ|
σ

√
2

π
e−(1/2)( x−μ

σ
)2dx

= σ

∫ ∞

0
|u − δ|

√
2

π
e−(1/2)u2du,

Substituting
x − μ

σ
= u, and δ=ω−μ

σ

= σ

∫ δ

0
(δ − u)

√
2

π
e−(1/2)u2du + σ

∫ ∞

δ

(u − δ)

√
2

π
e−(1/2)u2du

= σ∀
π

(

δ
∀

πer f (
δ∀
2
) + ∀

2e− δ2
2 − ∀

2

)

+ σ∀
π

(

δ
∀

πer f (
δ∀
2
) + ∀

2e− δ2
2 − δ

∀
π

)

= σ

√
2

π

(

− 1 − δ

√
π

2
+ e− δ2

2 + δ

√
π

2
er f (

δ∀
2
)

)

.

This completes the proof of Lemma. �

Theorem 2.1: For X |μ, σ → H N (μ, σ ), the mean deviation, δ1, about the
mean, μ1, is given by

δ1 = E |X − μ1| =
∞∫

0

|x − μ1| f (x)dx

= 2σ

√
2

π

(
−1 + e−π−1 + er f (π−1/2)

)
(2.31)

Proof: We have

δ1 =
∞∫

0

|x − μ1| f (x)dx

From Eq. (2.21), the mean of X |μ, σ → H N (μ, σ ) is given by

μ1 = E [X ] = μ + σ

√
2

π
.
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Taking ω = μ1, we have

δ = ω − μ

σ
=
√

2

π
.

Thus, taking ω = μ1 and δ =
√

2
π
in the above Lemma, and simplifying, we have

δ1 = 2σ

√
2

π

(
−1 + e−π−1 + er f (π−1/2)

)
,

which completes the proof of Theorem 2.1. �

Theorem 2.2: For X |μ, σ → H N (μ, σ ), the mean deviation, δ2, about the
median, m, is given by

δ2 = E |X − m| =
∞∫

0

|x − m| f (x)dx

= σ

√
2

π

(
k
∀

π − 1 + 2e−k2 + 2k
∀

πer f (k)
)

, (2.32)

where k = er f −1 (0.50).

Proof: We have

δ2 =
∞∫

0

|x − m| f (x)dx

As derived in Sect. 2.2.3.7 above, the median of X |μ, σ → H N (μ, σ ) is given
by

m = Median (X) = μ + ∀
2er f −1 (0.50) σ = μ + σ

∀
2k,

where k = er f −1 (0.50).
Taking ω = m, we have

δ = ω − μ

σ
= m − μ

σ
= μ + σ

∀
2k − μ

σ
= ∀

2k

Thus, taking ω = m and δ = ∀
2k in the above Lemma, and simplifying, we have

δ2 = σ

√
2

π

(
k
∀

π − 1 + 2e−k2 + 2k
∀

πer f (k)
)

,

where k = er f −1 (0.50). This completes the proof of Theorem 2.2. �



2.2 Different Forms of Normal Distribution 27

2.2.3.10 Renyi and Shannon Entropies, and Song’s Measure of the Shape
of the Half-Normal Distribution

These are derived as given below.

(i) Renyi Entropy: Following Renyi (1961), the entropy of the half- normal ran-
dom variable X having the pdf (2.13) is given by

�R (γ ) = 1

1 − γ
ln

∞∫

0

[ fX (X)]γ dx,

= ln (γ )

2 (γ − 1)
− ln

[√
2

π

1

σ

]

, σ > 0, γ > 0, γ √= 1.

(2.33)

(ii) Shannon Entropy: Following Shannon (1948), the entropy of the half-normal
random variable X having the pdf (2.13) is given by

HX [ fX (X)] = E[− ln( fX (X)] = −
∞∫

0

fX (x) ln [ fX (x)] dx,

which is the particular case of Renyi entropy (2.31) for γ ≡ 1. Thus, in the
limit when γ ≡ 1 and using L’Hospital’s rule, Shannon entropy is easily
obtained from the Eq. (2.33) as follows:

HX [ fX (X)] = E[− ln( fX (X)] = = 1

2
− ln

[√
2

π

1

σ

]

, σ > 0.

(iii) Song’s Measure of the Shape of a Distribution: Following Song (2001), the
gradient of the Renyi entropy is given by

�≤
R (γ ) = d

dγ

[�R (γ )
] = 1

2

{
1

γ (γ − 1)
− ln (γ )

(γ − 1)2

⎢

(2.34)

which is related to the log likelihood by

�≤
R (1) = −1

2
V ar [ln f (X)] .

Thus, in the limit when γ ≡ 1 and using L’Hospital’s rule, Song’s measure
of the shape of the distribution of the half-normal random variable X having
the pdf (2.13) is readily obtained from the Eq. (2.33) as follows:
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�≤
R (1) = −1

8
(< 0),

the negative value of Song’s measure indicating herein a “flat” or “platykurtic”
distribution, which can be used in comparing the shapes of various densities
and measuring heaviness of tails, similar to the measure of kurtosis.

2.2.3.11 Percentiles of the Half-Normal Distribution

This section computes the percentiles of the half-normal distribution, by usingMaple
10. For any p(0 < p < 1), the (100p)th percentile (also called the quantile of
order p) of the half-normal distribution, X |μ, σ → H N (μ, σ ), with the pdf
fX (x) given by (2.13), is a number z p such that the area under fX (x) to the left of
z p is p. That is, z p is any root of the equation

F(z p) =
z p∫

−∞
fX (t)dt = p. (2.35)

Thus, from the Eq. (2.35), using the Maple program, the percentiles z p of the half-
normal distribution, X |μ, σ → H N (μ, σ ) can easily been obtained.

2.2.4 Folded Normal Distribution

An important class of probability distributions, known as the folded distributions,
arises in many practical problems when only the magnitudes of deviations are
recorded, and the signs of the deviations are ignored. The folded normal distrib-
ution is one such probability distribution which belongs to this class. It is related to
the normal distribution in the sense that if Y is a normally distributed random vari-
able with mean μ (location) and variance σ 2 (scale), that is, if Y → N

(
μ, σ 2

⎛
,

then the random variable X = |Y | is said to have a folded normal distribution.
The distribution is called folded because the probability mass (that is, area) to the
left of the point x = 0 is folded over by taking the absolute value. As pointed
out above, such a case may be encountered if only the magnitude of some random
variable is recorded, without taking into consideration its sign (that is, its direc-
tion). Further, this distribution is used when the measurement system produces only
positive measurements, from a normally distributed process. To fit a folded normal
distribution, only the average and specified sigma (process, sample, or population)
are needed. Many researchers have studied the statistical methods dealing with the
properties and applications of the folded normal distribution, among them Daniel
(1959), Leon et al. (1961), Elandt (1961), Nelson (1980), Patel and Read (1982),



2.2 Different Forms of Normal Distribution 29

Sinha (1983), Johnson et al. (1994), Laughlin (http://www.causascientia.org/math_
stat/Dists/Compendium.pdf,2001), and Kim (2006) are notable.

Definition: Let Y → N
(
μ, σ 2

⎛
be a normally distributed random variable with

the mean μ and the variance σ 2. Let X = |Y |. Then X has a folded normal
distribution with the pdf fX (x) and cdf FX (x) = P(X ∈ x), respectively, given as
follows.

fX (x) =
⎧
⎨

⎩

1∀
2πσ

[

e− (x − μ)2

2σ2 + e− (−x − μ)2

2σ2

]

, x ≥ 0

0, x < 0
(2.36)

Note that the μ and σ 2 are location and scale parameters for the parent normal dis-
tribution. However, they are the shape parameters for the folded normal distribution.
Further, equivalently, if x ≥ 0, using a hyperbolic cosine function, the pdf fX (x)

of a folded normal distribution can be expressed as

fX (x) = 1

σ

√
2

π
cosh

(μx

σ 2

)
e− (x2 + μ2)

2σ2 , x ≥ 0.

and the cdf FX(x) as

FX (x) = 1∀
2πσ

x∫

0

(

e− (y − μ)2

2σ2 + e− (−y − μ)2

2σ2

)

dy,

x ≥ 0, |μ| < ∞, σ > 0. (2.37)

Taking z = y − μ
σ

in (2.37), the cdf FX (x) of a folded normal distribution can also
be expressed as

FX (x) = 1∀
2π

(x − μ)/σ∫

−μ/σ

⎞

e− 1
2 z2 + e

− 1
2

(
z + 2μ

σ

)2
⎠

dz,

z ≥ 0, |μ| < ∞, σ > 0, (2.38)

where μ and σ 2 are the mean and the variance of the parent normal distribution. To
describe the shapes of the folded normal distribution, the plots of the pdf (2.36) for
different values of the parameters μ and σ are provided in Fig. 2.6 by using Maple
10. The effects of the parameters can easily be seen from these graphs. Similar plots
can be drawn for others values of the parameters.

http://www.causascientia.org/math_stat/Dists/Compendium.pdf,2001
http://www.causascientia.org/math_stat/Dists/Compendium.pdf,2001
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Fig. 2.6 Plots of the folded
normal pdf

2.2.4.1 Some Properties of the Folded Normal Distribution

This section discusses some important properties of the folded normal distribution,
X → F N

(
μ, σ 2

⎛
.

2.2.4.2 Special Cases

The folded normal distribution is related to the following distributions (see, for
example, Patel and Read 1982, and Johnson et al. 1994, among others).

(i) If X → F N
(
μ, σ 2

⎛
, then (X/σ) has a non-central chi distribution with one

degree of freedom and non-centrality parameter μ2

σ 2 .
(ii) On the other hand, if a random variableU has a non-central chi distributionwith

one degree of freedom and non-centrality parameter μ2

σ 2 , then the distribution

of the random variable σ
∀

U is given by the pdf fX (x) in (2.36).
(iii) If μ = 0, the folded normal distribution becomes a half-normal distribution

with the pdf fX (x) as given in (2.15).

2.2.4.3 Characteristic Property

If Z → N (μ, σ ), then |Z | → F N (μ, σ ).
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2.2.4.4 Mode

It is easy to see that the mode or modal value of x for which the folded normal
probability density function fX (x) defined by (2.36) ismaximum, is given by x = μ,
and the maximum value of the folded normal probability density function (2.35) is
given by

fX (μ) = 1
(∀

2π
)

σ

[

1 + e− 2μ2

σ2

]

. (2.39)

Clearly, the folded normal probability density function (2.36) is unimodal.

2.2.4.5 Moments

(i) r th Moment of the Folded Normal Random Variable: For some integer
r > 0, a general formula for the r th moment, μ≤

f (r), of the folded normal

random variable X → F N
(
μ, σ 2

⎛
having the pdf (2.36) has been derived

by Elandt (1961), which is presented here. Let θ = μ
σ
. Define Ir (a) =

1∀
2π

∞∫
a

yr e− 1
2 y2dy, r = 1, 2, . . . , which is known as the “incomplete normal

moment.” In particular,

I0 (a) = 1∀
2π

∞∫

a

e− 1
2 y2dy = 1 − ς(a), (2.40)

where ς(a) = 1∀
2π

a∫

−∞
e− 1

2 y2dy is the CDF of the unit normal N (0, 1).

Clearly, for r > 0, Ir (a) =
(

1∀
2π

)
ar − 1e− 1

2 a2 + (r − 1) Ir − 2 (a).

Thus, in view of these results, the r th moment, μ≤
f (r), of the folded normal

random variable X is easily expressed in terms of the Ir function as follows.

μ≤
f (r) = E

(
Xr ⎛ =

∞∫

0

x fX (x) dx

= (
σ r ⎛

r∑

j = 0

(
r
j

)

θr − j
[
I j (−θ) + (−1)r − j I j (θ)

]
. (2.41)

From the above Eq. (2.41) and noting, from the definition of the Ir function,

that I2 (−θ) − I2 (θ) = −
[(

2∀
2π

)
θe− 1

2 θ2 + {1 − 2I0 (−θ)}
]
, the first

four moments of the folded normal random distribution are easily obtained as
follows.
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μ≤
f (1) = E [X ] = μ f =

(
2∀
2π

)

σe− 1
2 θ2 − μ [1 − 2I0 (−θ)]

=
(

2∀
2π

)

σe− 1
2 θ2 − μ [1 − 2ς(θ)] ,

μ≤
f (2) = E

[
X2
]

= σ 2
f = μ2 + σ 2,

μ≤
f (3) = E

[
X3
]

=
(
μ2 + 2σ 2

)
μ f − μσ 2 [1 − 2ς(θ)] ,

and
μ≤

f (4) = E
[

X4
]

= μ4 + 6μ2σ 2 + 3σ 4. (2.42)

(ii) Central Moments of the Folded Normal Random Variable: For some integer
n > 0, the nth central moment (about the mean μ≤

f (1) = E (X)) of the folded
normal random variable X having the pdf (2.36) can be easily obtained using
the formula

μ f (n) = E
[(

X − μ≤
f (1)

)n] =
n∑

r = 0

(
n
r

) (
−μ≤

f (1)

)n − r
E
(
Xr ⎛ ,

(2.43)
where E (Xr ) = μ≤

f (r) denotes the r th moment, given by the Eq. (2.41), of the
folded normal random variable X . Thus, from the above Eq. (2.43), the first four
central moments of the folded normal random variable X are easily obtained as
follows.

μ f (1) = 0,

μ f (2) = μ2 + σ 2 − μ2
f ,

μ f (3) = β3 = 2

[

μ3
f − μ2μ f −

(
σ 3

∀
2π

)

e− 1
2 θ2
]

,

and

μ f (4) = β4 =
(
μ4 + 6μ2σ 2 + 3σ 4

)

+
(

8σ 3

∀
2π

)

e− 1
2 θ2μ f + 2

(
μ2 − 3σ 2

)
μ2

f − 3μ4
f .

(2.44)

2.2.4.6 Mean, Variance, and Coefficients of Skewness and Kurtosis
of the Folded Normal Random Variable

These are easily obtained as follows:
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(i) Mean: E (X) = α1 = μ f =
(

2∀
2π

)
σe− 1

2 θ2 − μ [1 − 2ς(θ)],

(ii) Variance: V ar (X) = β2 = μ f (2) = μ2 + σ 2 − μ2
f , σ > 0,

(iii) Coefficient of Skewness: γ1 (X) = μ3

[μ2]
3
2
,

(iv) Coefficient of Kurtosis: γ2 (X) = μ f (4)

[μ f (2)]2
,

where the symbols have their usual meanings as described above.

2.2.4.7 Percentiles of the Folded Normal Distribution

This section computes the percentiles of the folded normal distribution, by using
Maple 10. For any p(0 < p < 1), the (100p)th percentile (also called the quantile
of order p) of the folded normal distribution, X → F N

(
μ, σ 2

⎛
, with the pdf

fX (x) given by (2.36), is a number z p such that the area under fX (x) to the left of
z p is p. That is, z p is any root of the equation

F(z p) =
z p∫

−∞
fX (t)dt = p. (2.45)

Thus, from the Eq. (2.45), using the Maple program, the percentiles z p of the folded
normal distribution can be computed for some selected values of the parameters.

Note: For the tables of the folded normal cdf FX (x) = P(X ∈ x) for different
values of the parameters, for example,

μ f
σ f

= 1.3236, 1.4(0.1)3, and x = 0.1(0.1)7,
the interested readers are referred to Leon et al. (1961).

Note: As noted by Elandt (1961), the family of the folded normal distributions,
N f
(
μ f , σ f

⎛
, is included between the half-normal, for which

μ f
σ f

= 1.3237, and the

normal, for which
μ f
σ f

is infinite. Approximate normality is attained if , for which
μ f
σ f

> 3.

2.2.5 Truncated Distributions

Following Rohatgi and Saleh (2001), and Lawless (2004), we first present an
overview of the truncated distributions.

2.2.5.1 Overview of Truncated Distributions

Suppose we have a probability distribution defined for a continuous random variable
X. If some set of values in the range of X are excluded, then the probability distri-
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bution for the random variable X is said to be truncated. We defined the truncated
distributions as follows.

Definition: Let X be a continuous random variable on a probability space
(�, S, P), and let T ∈ B such that 0 < P {X ∈ T } < 1, where B is a σ - field
on the set of real numbers�. Then the conditional distribution P {X ∈ x | X ∈ T },
defined for any real x , is called the truncated distribution of X . Let fX (x) and FX (x)
denote the probability density function (pdf) and the cumulative distribution function
(cdf), respectively, of the parent random variable X . If the random variable with the
truncated distribution function P {X ∈ x | X ∈ T } be denoted by Y, then Y has
support T. Then the cumulative distribution function (cdf), say, G (y), and the prob-
ability density function (pdf), say, g (y), for the random variable Y are, respectively,
given by

GY (y) = P{Y ∈ y | Y ∈ T } = P {Y ∈ y, Y ∈ T }
P {Y ∈ T } =

∫

(−∞, y] ∩ T
fX (u)du

∫

T
fX (u)du

,

(2.46)
and

gY (y) =
⎧
⎨

⎩

fX (y)∫

T
fX (u)du

, y ∈ T

0, y /∈ T .

(2.47)

Clearly gY (y) in (2.47) defines a pdf with support T, since
∫

T gY (y)dy =
∫

T
fX (y)dy

∫

T
fX (u)du

= 1. Note that here T is not necessarily a bounded set of real num-

bers. In particular, if the values of Y below a specified value a are excluded from the
distribution, then the remaining values of Y in the population have a distribution with
the pdf given by gL (y; a) = fX (y)

1 − FX (a)
, a ∈ y < ∞, and the distribution is

said to be left truncated at a. Conversely, if the values of Y above a specified value a
are excluded from the distribution, then the remaining values of Y in the population
have a distribution with the pdf given by gR (y; a) = fX (y)

FX (a)
, 0 ∈ y ∈ a,

and the distribution is said to be right truncated at a. Further, if Y has a support
T = [a1, a2], where −∞ < a1 < a2 < ∞, then the conditional distribution
of Y, given that a1 ∈ y ∈ a2, is called a doubly truncated distribution with the
cdf, say, G (y), and the pdf, say, g (y), respectively, given by

GY (y) = FX {max (min (y, a2) , a1)} − FX (a1)

FX (a2) − FX (a1)
, (2.48)

and

gY (y) =
⎝

fX (y)
FX (a2) − FX (a1)

, y ∈ [a1, a2]
0, y /∈ [a1, a2] .

(2.49)
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The truncated distribution for a continuous random variable is one of the important
research topics both from the theoretical and applications point of view. It arises
in many probabilistic modeling problems of biology, crystallography, economics,
engineering, forecasting, genetics, hydrology, insurance, lifetime data analysis,
management, medicine, order statistics, physics, production research, psychology,
reliability, quality engineering, survival analysis, etc, when sampling is carried out
from an incomplete population data. For details on the properties and estimation of
parameters of truncated distributions, and their applications to the statistical analysis
of truncated data, see, for example, Hald (1952), Chapman (1956), Hausman and
Wise (1977), Thomopoulos (1980), Patel and Read (1982), Levy (1982), Sugiura
and Gomi (1985), Schneider (1986), Kimber and Jeynes (1987), Kececioglu (1991),
Cohen (1991), Andersen et al. (1993), Johnson et al. (1994), Klugman et al. (1998),
Rohatgi and Saleh (2001), Balakrishnan and Nevzorov (2003), David and Nagaraja
(2003), Lawless (2003), Jawitz (2004), Greene (2005), Nadarajah and Kotz (2006a),
Maksay and Stoica (2006) and Nadarajah and Kotz (2007) and references therein.

The truncated distributions of a normally distributed random variable, their prop-
erties and applications have been extensively studied by many researchers, among
them Bliss (1935 for the probit model which is used to model the choice probability
of a binary outcome), Hald (1952), Tobin (1958) for the probit model which is used
to model censored data), Shah and Jaiswal (1966), Hausman and Wise (1977), Tho-
mopoulos (1980), Patel and Read (1982), Levy (1982), Sugiura and Gomi (1985),
Schneider (1986), Kimber and Jeynes (1987), Cohen (1959, 1991), Johnson et al.
(1994), Barr and Sherrill (1999), Johnson (2001), David and Nagaraja (2003), Jawitz
(2004), Nadarajah and Kotz (2007), and Olive (2007), are notable. In what follows,
we present the pdf, moment generating function (mgf), mean, variance and other
properties of the truncated normal distribution most of which is discussed in Patel
and Read (1982), Johnson et al. (1994), Rohatgi and Saleh (2001), and Olive (2007).

Definition: Let X → N
(
μ, σ 2

⎛
be a normally distributed random variable with

themeanμ and the varianceσ 2. Let us consider a randomvariableY which represents
the truncated distribution of X over a support T = [a, b], where −∞ < a < b <

∞. Then the conditional distribution of Y, given that a ∈ y ∈ b, is called a
doubly truncated normal distribution with the pdf, say, gY (y), given by

gY (y) =

⎧
⎪⎨

⎪⎩

1
σ

φ
(

y − μ
σ

)

[
ς
(

b − μ
σ

)
− ς

(
a − μ

σ

)] , y ∈ [a, b]

0, y /∈ [a, b]

, (2.50)

where φ (.) and ς(.) are the pdf and cdf of the standard normal distribution, respec-
tively. If a = −∞, then the we have a (singly) truncated normal distribution from
above, (that is, right truncated). On the other hand, if b = ∞, then the we have
a (singly) truncated normal distribution from below, (that is, left truncated). The
following are some examples of the truncated normal distributions.
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Fig. 2.7 Example of a right
truncated normal distribution

(i) Example of a Left Truncated Normal Distribution: Taking a = 0, b = ∞,
andμ = 0, the pdf gY (y) in (2.50) reduces to that of the half normal distribution
in (2.15), which is an example of the left truncated normal distribution.

(ii) Example of a Right Truncated Normal Distribution:Taking a = −∞, b = 0,
μ = 0, and σ = 1 in (2.50), the pdf gY (y) of the right truncated normal
distribution is given by

gY (y) =
{
2φ (y) , −∞ < y ∈ 0
0, y > 0

, (2.51)

whereφ (.) is the pdf of the standard normal distribution. The shape of right truncated
normal pdf gY (y) in (2.51) is illustrated in the following Fig. (2.7).

2.2.5.2 MGF, Mean, and Variance of the Truncated Normal Distribution

These are given below.

(A) Moment Generating Function: The mgf of the doubly truncated normal dis-
tribution with the pdf gY (y) in (2.50) is easily obtained as
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M (t) = E
(

etY |Y ∈ [a, b]
)

= eμt + σ2 t2
2

⎧
⎨

⎩

[
ς
(

b − μ
σ

− σ t
)

− ς
( a − μ

σ
− σ t

⎛]

[
ς
(

b − μ
σ

)
− ς

( a − μ
σ

⎛]

⎫
⎬

⎭
(2.52)

(B) Mean, Second Moment and Variance: Using the expression for the mgf (2.52),
these are easily given by

(i) Mean = E (Y |Y ∈ [a, b]) = M ≤ (t)
∣
∣
t = 0

= μ + σ

⎡

⎣
φ
( a − μ

σ

⎛ − φ
(

b − μ
σ

)

ς
(

b − μ
σ

)
− ς

( a − μ
σ

⎛

⎤

⎦ (2.53)

Particular Cases:

(I) If b ≡ ∞ in (2.52), then we have

E (Y |Y > a) = μ + σh,

where h = φ
(

a − μ
σ

)

1 − ς
(

a − μ
σ

) is called the Hazard Function (or the Hazard Rate, or the

Inverse Mill’s Ratio) of the normal distribution.

(II) If a ≡ −∞ in (2.53), then we have

E (Y |Y < b) = μ − σ

⎡

⎣
φ
(

b − μ
σ

)

ς
(

b − μ
σ

)

⎤

⎦ . (2.54)

(III) If b ≡ ∞ in (2.54), then Y is not truncated and we have

E (Y ) = μ .

V (Y ) = σ 2[1 + αφ]

(ii) Second Moment = E
(

Y 2|Y ∈ [a, b]
)

= M ≤≤ (t)
∣
∣
t = 0

= 2μ {E (Y |Y ∈ [a, b])} − μ2

= μ2 + 2μσ

⎡

⎣
φ
( a − μ

σ

⎛ − φ
(

b − μ
σ

)

ς
(

b − μ
σ

)
− ς

( a − μ
σ

⎛

⎤

⎦
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+ σ 2

⎡

⎣1 +
( a − μ

σ

⎛
φ
( a − μ

σ

⎛ −
(

b − μ
σ

)
φ
(

b − μ
σ

)

ς
(

b − μ
σ

)
− ς

( a − μ
σ

⎛

⎤

⎦

(2.55)

and

(iii) Variance = Var (Y |Y ∈ [a, b]) =
{

E
(

Y 2|Y ∈ [a, b]
)}

− {E (Y |Y ∈ [a, b])}2

= σ 2 {1 +
( a − μ

σ

⎛
φ
( a − μ

σ

⎛ −
(

b − μ
σ

)
φ
(

b − μ
σ

)

ς
(

b − μ
σ

)
− ς

( a − μ
σ

⎛

−
⎡

⎣
φ
(

b − μ
σ

)
− φ

( a − μ
σ

⎛

ς
(

b − μ
σ

)
− ς

( a − μ
σ

⎛

⎤

⎦

2
⎫
⎪⎬

⎪⎭
(2.56)

Some Further Remarks on the Truncated Normal Distribution:

(i) Let Y → T N
(
μ, σ 2, a = μ − kσ, b = μ + kσ

⎛
, for some real k,

be the truncated version of a normal distribution with mean μ and variance
σ 2. Then, from (2.53) and (2.56), it easily follows that E (Y ) = μ and

V ar (Y ) = σ 2
{
1 − 2kφ(k)

2kς(k) − 1

}
, (see, for example, Olive, 2007).

(ii) The interested readers are also referred to Shah and Jaiswal (1966) for some
nice discussion on the pdf gY (y) of the truncated normal distribution and its
moments, when the origin is shifted at a.

(iii) A table of themeanμt , standard deviation σt , and the ratio (mean deviation/σt )

for selected values of ς
( a − μ

σ

⎛
and 1 − ς

(
b − μ

σ

)
have been provided in

Johnson and Kotz (1994).

2.2.6 Inverse Normal (Gaussian) Distribution (IGD)

The inverse Gaussian distribution (IGD) represents a class of distribution. The
distribution was initially considered by Schrondinger (1915) and further studied by
many authors, among them Tweedie (1957a, b) and Chhikara and Folks (1974) are
notable. Several advantages and applications in different fields of IGD are given by
Tweedie (1957), Johnson and Kotz (1994), Chhikara and Folks (1974, 1976,1977),
and Folks and Chhikara (1978), among others. For the generalized inverse Gaussian
distribution (GIG) and its statistical properties, the interested readers are referred
to Good (1953), Sichel (1974, 1975), Barndorff-Nielsen (1977, 1978), Jorgensen
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Fig. 2.8 Plots of the inverse
Gaussian pdf

(1982), and Johnson and Kotz (1994), and references therein. In what follows,
we present briefly the pdf, cdf, mean, variance and other properties of the inverse
Gaussian distribution (IGD).

Definition: The pdf of the Inverse Gaussian distribution (IGD) with parameters μ

and λ is given by

f (x, μ, λ) =
(

λ

2πx3

)1/2
exp

{

− λ

2μ2x
(x − μ)2

⎢

x > 0, μ > 0, λ > 0

(2.57)

where μ is location parameter and λ is a shape parameter. The mean and variance of
this distribution are μ and μ3/λ respectively. To describe the shapes of the inverse
Gaussian distribution, the plots of the pdf (2.57), for μ = 1 and λ = 1, 3, 5 are
provided in Fig. 2.8 by using Maple 10. The effects of the parameters can easily be
seen from these graphs. Similar plots can be drawn for others values of the parameters.

Properties of IGD:
Let x1, x2, ..., xn be a random sample of size n from the inverse Gaussian distribution
(1.1). Themaximum likelihood estimators (MLE’s) forμ andλ are respectively given
by

http://dx.doi.org/10.2991/978-94-6239-061-4_1
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μ̂ = x̄ =
n∑

i=1

xi/n, λ̃ = n

V
,where V =

n∑

i=1

(
1

xi
− 1

x̄

)

.

It is well known that

(i) the sample mean x̄ is unbiased estimate of μ where as λ̃ is a biased estimate of
λ.

(ii) x̄ follows IGD with parameters μ and n λ, whereas λV is distributed as chi
–square distribution with (n-1) degrees of freedom

(iii) x̄ and V are stochastically independent and jointly sufficient for (μ,λ) if both
are unknown.

(iv) the uniformly minimum variance unbiased estimator (UMVUE) of λ is λ̂ =
(n − 3)/V and V ar

(
λ̂
⎛ = 2λ2/(n − 5) = M SE

(
λ̂
⎛
.

2.2.7 Skew Normal Distributions

This section discusses the univariate skew normal distribution (SND) and some of
its characteristics. The skew normal distribution represents a parametric class of
probability distributions, reflecting varying degrees of skewness, which includes the
standard normal distribution as a special case. The skewness parameter involved
in this class of distributions makes it possible for probabilistic modeling of the data
obtained fromskewedpopulation. The skewnormal distributions are also useful in the
study of the robustness and as priors in Bayesian analysis of the data. It appears from
the statistical literatures that the skew normal class of densities and its applications
first appeared indirectly and independently in the work of Birnbaum (1950), Roberts
(1966), O’Hagan and Leonard (1976), and Aigner et al. (1977). The term skew
normal distribution (SND) was introduced by Azzalini (1985, 1986), which give a
systematic treatment of this distribution, developed independently from earlier work.
For further studies, developments, and applications, see, for example, Henze (1986),
Mukhopadhyay and Vidakovic (1995), Chiogna (1998), Pewsey (2000), Azzalini
(2001), Gupta et al. (2002), Monti (2003), Nadarajah and Kotz (2003), Arnold and
Lin (2004),DallaValle (2004),Genton (2004),Arellano-Valle et al. (2004), Buccianti
(2005), Azzalini (2005, 2006), Arellano-Valle and Azzalini (2006), Bagui and Bagui
(2006), Nadarajah and Kotz (2006), Shkedy et al. (2006), Pewsey (2006), Fernandes
et al. (2007), Mateu-Figueras et al. (2007), Chakraborty and Hazarika (2011), Eling
(2011), Azzalini and Regoli (2012), among others. For generalized skew normal
distribution, the interested readers are referred to Gupta and Gupta (2004),
Jamalizadeh, et al. (2008), and Kazemi et al. (2011), among others. Multivariate
versions of SND have also been proposed, among them Azzalini and Dalla Valle
(1996), Azzalini and Capitanio (1999), Arellano-Valle et al. (2002), Gupta and Chen
(2004), and Vernic (2006) are notable. Following Azzalini (1985, 1986, 2006), the
definition and some properties, including some graphs, of the univariate skew normal
distribution (SND) are presented below.
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Fig. 2.9 Plot of the
skew normal pdf:
(μ = 0, σ = 1, λ = 5)

Definition: For some real-valued parameter λ, a continuous random variable Xλ is
said to have a skew normal distribution, denoted by Xλ → SN (λ), if its probability
density function is given by

fX (x; λ) = 2 φ (x) ς (λx) , −∞ < x < ∞, , (2.58)

whereφ (x) =
(

1∀
2π

)
e− 1

2 x2 andς(λx) =
λx∫

−∞
φ (t) dt denote the probability den-

sity function and cumulative distribution function of the standard normal distribution
respectively.

2.2.7.1 Shapes of the Skew Normal Distribution

The shape of the skew normal probability density function given by (2.58) depends
on the values of the parameter λ. For some values of the parameters (μ, σ, λ), the
shapes of the pdf (2.58) are provided in Figs. 2.9, 2.10 and 2.11. The effects of the
parameter can easily be seen from these graphs. Similar plots can be drawn for others
values of the parameters.

Remarks: The continuous random variable Xλ is said to have a skew normal dis-
tribution, denoted by Xλ → SN (λ), because the family of distributions represented
by it includes the standard N (0, 1) distribution as a special case, but in general its
members have a skewed density. This is also evident from the fact that X2

λ → χ2

for all values of the parameter λ. Also, it can be easily seen that the skew normal
density function fX (x; λ) has the following characteristics:

1. when λ = 0, we obtain the standard normal density function fX (x; 0)with zero
skewness;

2. as |λ| increases, the skewness of the skew normal distribution also increases;
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Fig. 2.10 Plot of the skew normal pdf: (μ = 1, σ = 3, λ = 10)

3. when |λ| ≡ ∞, the skew normal density function fX (x; λ) converges to the
half-normal (or folded normal) density function;

4. if the sign of λ changes, the skew normal density function fX (x; λ) is reflected
on the opposite side of the vertical axis.

2.2.7.2 Some Properties of Skew Normal Distribution

This section discusses some important properties of the skew normal distribution,
Xλ → SN (λ).
Properties of SN (λ):

(a) SN (0) = N (0, 1) .

(b) If Xλ → SN (λ), then −Xλ → SN (−λ).
(c) If λ ≡ ±∞, and Z → N (0, 1), then SN (λ) ≡ ±|Z | → H N (0, 1),

that is, SN (λ) tends to the half-normal distribution.
(d) If Xλ → SN (λ), then X2

λ → χ2.

(e) TheMGFof Xλ is given by Mλ (t) = 2e
t2
2 ς(δt) , t ∈ �, where δ = λ∀

1 + λ2
.

(f) It is easy to see that E (Xλ) = δ

(√
2
π

)

, and V ar (Xλ) = π − 2δ2
π

.

(g) The characteristic functionof Xλ is givenbyψλ (t) = e
−t2
2 [1 + ih (δt)] , t ∈

�, where h (x) =
(√

2
π

) x∫

0
e

y2

2 dy and h (−x) = −h (x) for x ≥ 0.
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Fig. 2.11 Plots of the skew normal pdf: (μ = 0, σ = 10, λ = 50)

(h) By introducing the following linear transformation Y = μ + σ X , that is,
X = Y − μ

σ
, where μ ≥ 0, σ > 0, we obtain a skew-normal distribution

with parameters (μ, σ, λ), denoted by Y → SN
(
μ, σ 2, λ

⎛
, if its probability

density function is given by

fY (y; μ, σ, λ) = 2φ

(
y − μ

σ

)

ς

(
λ (y − μ)

σ

)

, −∞ < y < ∞,

(2.59)
where φ (y) and ς(λy) denote the probability density function and cumulative
distribution function of the normal distribution respectively, and μ ≥ 0, σ >

0 and −∞ < λ < ∞ are referred as the location, the scale and the shape
parameters respectively. Some characteristic values of the random variable Y are
as follows:
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I. Mean: E (Y ) = μ +
⎞

σδ

√
2

π

⎠

II. Variance: V ar (Y ) = σ 2
(
π − 2δ2

⎛

π

III. Skewness: γ1 =
(
4 − π

2

)
[E (Xλ)]3

[V ar (Xλ)]
3
2

IV. Kurtosis: γ2 = 2 (π − 3)
[E (Xλ)]4

[V ar (Xλ)]2

2.2.7.3 Some Characteristics Properties of Skew Normal Distribution

FollowingGupta et al. (2004), some characterizations of the skewnormal distribution
(SND) are stated below.

(i) Let X1 and X2 be i.i.d. F , an unspecified distribution which admits moments of
all order. Then X2

1 → χ2
1 , X2

2 → χ2
1 , and

1
2 (X1 + X2)

2 → H0 (λ) if and
only if F = SN (λ) or F = SN (−λ) where H0 (λ) is the distribution of
1
2 (X + Y )2 when X and Y are i.i.d. SN (λ).

(ii) Let H0 (λ) be the distribution of (Y + a)2 where Y → SN (λ) and a √= 0
is a given constant. Let X be a random variable with a distribution that admits
moments of all order. Then X2 → χ2

1 , (X + a)2 → H0 (λ) if and only if
X → SN (λ) for some λ.

For detailed derivations of the above and more results on other characterizations of
the skew normal distribution (SND), see Gupta et al. (2004) and references therein.
The interested readers are also referred to Arnold and Lin (2004), where the authors
have shown that the skew-normal distributions and their limits are exactly the distri-
butions of order statistics of bivariate normally distributed variables. Further, using
generalized skew-normal distributions, the authors have characterized the distribu-
tions of random variables whose squares obey the chi-square distribution with one
degree of freedom.

2.3 Goodness-of-Fit Test (Test For Normality)

Thegoodness of fit (orGOF) tests are applied to test the suitability of a randomsample
with a theoretical probability distribution function. In other words, in the GOF test
analysis,we test the hypothesis if the randomsample drawn fromapopulation follows
a specific discrete or continuous distribution. The general approach for this is to first
determine a test statistic which is defined as a function of the data measuring the
distance between the hypothesis and the data. Then, assuming the hypothesis is true,
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a probability value of obtaining data which have a larger value of the test statistic than
the value observed, is determined, which is known as the p-value. Smaller p-values
(for example, less than 0.01) indicate a poor fit of the distribution. Higher values of p
(close to one) correspond to a good fit of the distribution. We consider the following
parametric and non-parametric goodness-of-fit tests

2.3.1 χ2(Chi-Squared) Test

The χ2 test, due to Karl Pearson, may be applied to test the fit of any specified con-
tinuous distribution to the given randomly selected continuous data. In χ2 analysis,
the data is first grouped into, say, k number of classes of equal probability. Each class
should contain at least 5 or more data points. The χ2 test statistic is given by

χ2 =
k∑

i = 1

(Oi − Ei )
2

Ei
(2.60)

where Oi is the observed frequency in class i , i = 1, . . . , k and Ei is the expected
frequency in class i , if the specified distribution were the correct one, and is given
by

Ei = F (xi ) − F (xi − 1 ) ,

where F (x) is the cumulative distribution function (CDF) of the probability distribu-
tion being tested, and xi , xi − 1 are the limits for the class i . The null and alternative
hypotheses being tested are, respectively, given by:

H0: The data follow the specified continuous distribution;
H1: The data do not follow the specified continuous distribution.

The null hypothesis (H0) is rejected at the chosen significance level, say, α, if the
test statistic is greater than the critical value denoted by χ2

1 − α, k − 1, with k − 1
degrees of freedom (df) and a significance level of α. If r parameters are estimated
from the data, df are k − r − 1.

2.3.2 Kolmogorov-Smirnov (K-S) Test

This test may also be applied to test the goodness of fit between a hypothesized
cumulative distribution function (CDF) F (x) and an empirical CDF Fn (x). Let
y1 < y2 < . . . < yn be the observed values of the order statistics of a random
sample x1 , x2 , . . . , xn of size n. When no two observations are equal, the empirical
CDF Fn (x) is given by, see Hogg and Tanis (2006),
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Fn (x) =
⎧
⎨

⎩

0, x < y1,
i
n , yi ∈ x < yi + 1, i = 1, 2, . . . , n − 1,
1, yn ∈ x .

(2.61)

Clearly,

Fn (x) = 1

n
[Number of Observations ∈ x] .

Following Blischke and Murthy (2000), the Kolmogorov-Smirnov test statistic, Dn ,
is defined as the maximum distance between the hypothesized CDF F (x) and the
empirical CDF Fn (x), and is given by

Dn = max
{

D+
n , D−

n

}
,

where

D+
n = max

i = 1, 2, ..., n

[
i

n
− Fn (yi )

]

and

D−
n = max

i = 1, 2, ..., n

[

Fn (yi ) − i − 1

n

]

.

For calculations of fractiles (percentiles) of the distribution of Dn , the interested
readers are referred to Massey (1951). In Stephens (1974), one can find a close
approximation of the fractiles of the distribution of Dn , based on a constant denoted
by dα which is a function of n only. The values of dα can also be found in Table11.2
on p. 400 of Blischke and Murthy (2000) for α = 0.15, 0.10, 0.05, and 0.01. The

critical value of Dn is calculated by the formula dα/
(∀

n + 0.11∀
n

+ 0.12
)
. The

null and alternative hypotheses being tested are, respectively, given by:

H0: The data follow the specified continuous distribution;
H1: The data do not follow the specified continuous distribution.

The null hypothesis (H0) is rejected at the chosen significance level, say, α, if the
Kolmogorov-Smirnov test statistic, Dn , is greater than the critical value calculated
by the above formula.

2.3.3 Anderson-Darling (A-D) Test

TheAnderson-Darling test is also based on the difference between the hypothesized
CDF F (x) and the empirical CDF Fn (x). Let y1 < y2 < . . . < yn be the observed
values of the order statistics of a random sample x1 , x2 , . . . , xn of size n. The A-D
test statistic (A2) is given by

http://dx.doi.org/10.2991/978-94-6239-061-4_11
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A2 = A2
n = −1

n

n∑

i = 1

(2i − 1)
{
ln Fn (yi ) + ln

[
1 − Fn (yn − i + 1)

]} − n.

Fractiles of the distribution of A2
n for α = 0.15, 0.10, 0.05, and 0.01, denoted by

aα , are given in Table11.2 on p. 400 of Blischke and Murthy (2000). The null and
alternative hypotheses being tested are, respectively, given by:

H0 : The data follow the specified continuous distribution
H1: The data do not follow the specified continuous distribution.

The null hypothesis (H0) is rejected if the A-D test statistic, A2
n , is greater than the

above tabulated constant aα (also known as the critical value for A-D test analysis) at
one of the chosen significance levels, α = 0.15, 0.10, 0.05, and 0.01. As pointed
out in Blischke and Murthy (2000), “the critical value aα does not depend on n, and
has been found to be a very good approximation in samples as small as n = 3”.

2.3.4 The Shapiro-Wilk Test for Normality

TheShapiro-Wilk test (also known as theW test)may be applied to test the goodness
of fit between a hypothesized cumulative distribution function (CDF)F (x) and an
empirical CDF Fn (x).

Let y1 < y2 < . . . < yn be the observed values of the order statistics of a
random sample x1 , x2 , . . . , xn of size n with some unknown distribution function
F (x). Following Conover (1999), the Shapiro-Wilk test statistic, W , is defined as

W =

k∑

i = 1
ai (yn − i + 1 − yi )

2

n∑

i = 1
(xi − x)2

,

where x denotes the sample mean, and, for the observed sample size n ∈ 50, the
coefficients ai , i = 1, . . . , k, where k is approximately n

2 , are available in Table
A16, pp. 550–552, of Conover (1999). For the observed sample size n > 50, the
interested readers are referred to D’Agostino (1971) and Shapiro and Francia (1972)
(Fig. 2.12).

For the Shapiro-Wilk test, the null and alternative hypotheses being are, respec-
tively, given by:

H0: F (x) is a normal distribution with unspecified mean and variance
H1: F (x) is non-normal.

The null hypothesis (H0) is rejected at one of the chosen significance levels α if the
Shapiro-Wilk test statistic, W , is less than the α quantile as given by Table A 17,

http://dx.doi.org/10.2991/978-94-6239-061-4_11
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Fig. 2.12 Frequency histogram of the weights of 40 adult men

pp. 552–553, of Conover (1999). The p- value for the Shapiro-Wilk test may be
calculated by following the procedure on p. 451 of Conover (1999).

Note:The Shapiro-Wilk test statisticmay be calculated using the computer softwares
such as R, Maple, Minitab, SAS, and StatXact, among others.

2.3.5 Applications

In order to examine the applications of the above tests of normality, we consider the
following example of weights of a random sample of 40 adult men (Source: Biosta-
tistics for the Biological and Health Sciences, Mario F Triola, Publisher: Pearson,
2005).

Example: We consider the weights of a random sample of 40 adult men as given
below:

{169.1, 144.2, 179.3, 175.8, 152.6, 166.8, 135.0, 201.5, 175.2, 139.0, 156.3, 186.6,
191.1, 151.3, 209.4, 237.1, 176.7, 220.6, 166.1, 137.4, 164.2, 162.4, 151.8, 144.1,
204.6, 193.8, 172.9, 161.9, 174.8, 169.8, 213.3, 198.0, 173.3, 214.5, 137.1, 119.5,
189.1, 164.7, 170.1, 151.0}.



2.3 Goodness-of-Fit Test (Test For Normality) 49

Table 2.2 Descriptive statistics

Statistic Value Percentile Value

Sample size 40 Min 119.5
Range 117.6 5% 135.11
Mean 172.55 10% 137.56
Variance 693.12 25% (Q1) 152.0
Standard deviation 26.327 50% (Median) 169.95
Coefficient of variation 0.15258 75% (Q3) 190.6
Standard error 4.1627 90% 212.91
Skewness 0.37037 95% 220.29
Excess Kurtosis −0.16642 Max 237.1

Table 2.3 Normality for the Weights of 40 Adult Men

Test statistics Value of the test statistics P-value Decision at 5% level of significance

K-S test 0.112 0.652 Do not reject H0

A-D test 0.306 0.552 Do not reject H0

Chi-Squared test 2.712 0.844 Do not reject H0

Shapiro-Wilk test 0.967 0.379 Do not reject H0

Using the software EasyFit, the descriptive statistics are computed in the Table2.2
below. The frequency histogram of the weights of 40 adult men is drawn in Fig. 2.12.

The goodness of fit (or GOF) tests, as discussed above, are applied to test the com-
patibility of our example of weights of the random sample of 40 adult men with our
hypothesized theoretical probability distribution, that is, normal distribution, using
various software such as EasyFit, Maple, and Minitab. The results are summarized
in the Table2.2 below. The chosen significance level is α = 0.05. The null and
alternative hypotheses being tested are, respectively, given by:

H0: The data follow the normal distribution;
H1: The data do not follow the normal distribution.

It is obvious from Table2.3 is that the normal distribution seems to be an appropriate
model for the weights of 40 adult men considered here. Since the sample size is large
enough, all tests are valid for this example. In this section, we have discussed various
tests of normality to test the suitability of a random sample with a theoretical proba-
bility distribution function. In particular, we have applied to test the applicability of
normal distribution to a random sample of the weights of 40 adult men. It is hoped
that this study may be helpful to apply these goodness of fit (or GOF) tests to other
examples also.
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2.4 Summary

The different forms of normal distributions and their various properties are discussed
in this chapter. The entropy of a random variable having the normal distribution has
been given. The expressions for the characteristic function of a normal distribu-
tion are provided. Some goodness of fit tests for testing the normality along with
applications is given. By using Maple 10, various graphs have been plotted. As a
motivation, different forms of normal distributions (folded and half normal etc.) and
their properties have also been provided.



Chapter 3
Student’s t Distribution

3.1 Student’s t Distribution

TheStudent’s t distribution or t distribution defines a family of continuous probability
distributions. It has a wide range of applications in probability, statistics, and other
fields of sciences. It was first developed byWillieam S. Gosset (1908) in his work on
“the probable error of a mean,” published by him under the nom de plume of Student.
Further developments continued with the contributions of Fisher (1925) and others
later. For detailed discussions on the development of the t distribution and its usages,
see, example, Pearson (1967, 1970), Eisenhart (1979), Box (1981), Patel and Read
(1982), Johnson et al. (1995), Wiper et al. (2005), Finner (2008), and Zabell (2008),
and references therein. The graph of the probability density function of the Student’s
t distribution is a symmetric and bell-shaped curve, differing for different sample
sizes. The Student’s t distribution has mean = 0 and standard deviation is greater 1
for degrees of freedom greater than 2 and it does not exists for 1 and 2 degrees of
freedom. As the sample size n → ∈, the Student’s t distribution approaches the
standard normal distribution. If we compare the z-table and t table, we can see that
the percentile points for of normal distribution and Student −t distribution for large
degrees of freedom are approximately equal.

The 95th and 99th percentile points of Standard Normal with pdf fZ (z) and
Student−t distribution with n (∀1) degrees of freedom with pdf ftn (x), where

fZ (z) = 1∞
2σ

e− z2
2 ,−∈ < z < ∈ and

ftn (x) = 1∞
nB
( n
2 , 1

2

)

(

1 + x2

n

) n+1
2

,−∈ < x < ∈.,

are given below.
The classical theory of statistical inference is mainly based on the assumption

that errors are normally and independently distributed. Recently many researchers
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Percentile points N(0,1) t40 t50 t60 t80 t100
95 1.645 1.684 1.676 1.671 1.664 1.660
99 2.33 2.423 2.403 2.390 2.374 2.364

have investigated that how inferences are affected if the population model departs
from normality. In reality, many economic, finance and business data exhibit fat-
tailed distributions. The suitability of independent t-distributions for stock return
data was performed by Blattberg and Gonedes (1974). Zellner (1976) analyzed the
stock prices data by a simple regression model under the assumption that errors have
a multivariate t-distribution. However, errors in this model are uncorrelated but not
independent. In a later date, Prucha and Kelejian (1984) discussed the inadequacy of
normal distribution and suggested a correlated t-model for many real world problems
as a better alternative of normal distribution. Kelejian and Prucha (1985) proved
that the uncorrelated t-distributions are better to capture heavy-tailed behavior than
independent t-distributions. For detailed on the multivariate t distribution and its
applications in linear regression model, we refer our interested readers to Kelker
(1970), Canmbanis et al. (1981), Fang and Anderson (1990), Kibria (1996), Kibria
and Haq (1998, 1999), Kibria and Saleh (2003), Kotz and Nadarajah (2004), Joarder
(1998), Joarder and Ali (1997), Joarder and Sing (1997), and the references therein.

In this chapter, we present some basic properties of student’s t distribution, (for
details, see, for example, Whittaker and Robinson (1967), Feller (1968, 1971), Patel
et al. (1976), Patel and Read (1982), Johnson et al. (1994), Joarder and Ali (1997),
Joarder and Singh (1997), Joarder (1998), Evans et al. (2000), Balakrishnan and
Nevzorov (2003), and Kapadia et al. (2005), among others).

Definition 3.1.1 (General Form of Student’s t Distribution):A continuous random
variable X with location parameterμ, scale parameter π > 0, and degrees of freedom
v > 0 is said to have the general form of the Student’s t distribution if its pdf gx(x)

is given by, (for details, see Blattberg and Gonedes (1974)):

gx(x) = 1

π
∞

vB
( v
2 ,

1
2

)

[

1 + 1

v

(
x − μ

π

)2]
−(1+v)

2

,

− ∈ < x < ∈, v > 0, π > 0, (3.1)

where B (., .) denotes beta function.
The general Student’s t distribution has the following properties, (for details, see

Moix (2001)):

(i) E(X) = μ for v >1 and E(X) does not exist for v = 1;
(ii) var(X) = = vπ 2

v−2 for v > 2 and var (X) does not exist for v ≤2;
(iii) In general, all moments of order r < v are finite;
(iv) When v = 1, the general Student’s t distribution reduces to the Cauchy distri-

bution;
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(iv) When v → ∈, the general Student’s t distribution converges to the normal
distribution;

(v) Forμ = 0 andπ = 1, the general Student’s t distribution reduces to the standard
Student’s t distribution;

(vi) The probability density function of the standardized Student’s t randomvariable
exhibits fatter tails than the probability density function of the standardized
normal random variable;

For a comparison between the stable and the Student’s t distributions, see, for exam-
ple, Embrechts et al. (1997), and Moix (2001), among others.

Definition 3.1.2 (Student’s t as a Mixture of Normal and Inverted Gamma
Distributions): It is well-known that the pdf of the Student’s t distribution can
be expressed as

gX (x) =
∈∫

0

1∞
2σκ2π 2

e
− 1

2

(
x − μ
κ π

)2

h(κ) dκ, −∈ < x < ∈, κ > 0, π > 0,

(3.2)
which is the mixture of the normal distribution N

(
μ,κ2π 2

)
and the inverted gamma

distribution with v degrees of freedom and pdf given by

hα(κ) = 2
( v
2

) v
2

γ
( v
2

) κ−(v+1)e
− 1

2

(
v

κ2

)

, κ > 0, v > 0.

Definition 3.1.3 (Student’s t as a Scale Mixture of Normal Distributions): Let
Tv be a Student’s t random variable with v degrees of freedom and pdf fTv(t). The
pdf of the Student’s t distribution can be expressed as a scale mixture of normal
distributions given by

fTv(t) =
∈∫

0

1∞
2σ

e− t2x
2v

∞
x∞
v

1

γ
( v
2

)
2

v
2

x
v
2−1e− x

2 dx, v > 0, (3.3)

(for details, see Casella and Berger (2002)).

Definition 3.1.4 (Student’s t as a Predictive Distribution, a Bayesian Approach):
Let X ∃ N

(
0, 1

φ

)
be a normal random variable with pdf fX (x |φ) given by

fX (x |φ) =
∞

φ∞
2σ

e− φx2
2 , −∈ < x < ∈,

where φ = 1
π 2 , the inverse of the variance, is called the precision of X . Suppose that

φ has the gamma distribution with pdf h(φ) given by
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h (φ) = 1

γ (ς) βς
φς−1e− φ

β , 0 < φ < ∈.

Then the predictive pdf is given by

k1 (x) =
∈∫

0

φς+ 1
2−1

γ (ς) βς
∞
2σ

e
−
(

x2
2 + 1

β

)
φ
dφ

= γ
(
ς + 1

2

)

γ (ς) βς
∞
2σ

(
1

β
+ x2

2

)−
(
ς+ 1

2

)

, −∈ < x < ∈,

(3.4)

which, for ς = r
2 and β = 2

r , reduces to a Student’s t pdf with r degrees of freedom
given by

k1 (x) ≥
(

1 + x2

r

)− r+1
2

, −∈ < x < ∈,

(for details, see Hogg et al. (2005), and Hogg and Tanis (2006), among others).

Definition 3.1.5 (Standard Student’s t Distribution): A continuous random vari-
able X is said to have the standard Student’s t distribution with v degrees of freedom
if, for some integer v > 0, its pdf gX (x) and cdf G X (x) = P(X ≤ x) are, respec-
tively, given by

gx (x) = 1∞
vB
( v
2 ,

1
2

)

(

1 + x2

v

)−(1+v)/2

, −∈ < x < ∈, v > 0 . . . (3.5)

and

G X (x) =
{
1 − 1

2 It
( v
2 ,

1
2

)
, i f x > 0,

1
2 It
( v
2 ,

1
2

)
, otherwise,

. . . (3.6)

with t =
(
1 + x2

v

)−1
, where B (., .) and It (., .) denote beta and incomplete beta

functions, respectively. For special cases, we have

for v = 1, g1(x) = 1

σ(1 + x2)
, G1(x) = 1

2
+ 1

σ
arc tan (x),

for v = 2, g2(x) = 1

(2 + x2)
3
2

, G2(x) = 1

2
+ x

2
∞
2 + x2

.
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for v = 3, g3(x) = 6
∞
3

σ(3+x2)2
and as v → ∈, Gv(x) converges in distribution to the

cdf of N(0,1). Also,

G1(x) = 1

2
+ 1

σ
arc tan (x)

and letting φ = arc tan (x/v), we have

Gv(x) = 1

2
+ 1

σ

[

φ +
⎧

cos φ + 2

3
cos2 φ + 2(4) . . . (v − 3)

3(5) . . . (v − 2)
cosv−2 φ

⎨

sin φ

⎩

,

for v = 2n + 1, n = 1, 2, . . . and

Gv(x) = 1

2
+ 1

2

⎧

1+ 1

2
cos2 φ + 1(3)

2(4)
cos4 φ+ · · · +1(3) . . . (v − 3)

3(5) . . . (v − 2)
cosv−2 φ

⎨

sin φ,

for v = 2n, n = 1, 2, . . .
Another simple form of cdf G X (x) of the Student’s t distribution with v degrees

of freedom, which appears in the literature, is given by

G X (x) = 1

2
+

x γ
( v+1

2

)
2F1

(
1
2 ,

v+1
2 ; 3

2 ;− x2
v

)

∞
σv γ

( v
2

) , (3.7)

where 2F1 (. ) denote the generalized hypergeometric function of order (2.1), (see, for
example, Wikipedia (2007), among others). To describe the shapes of the Student’s t
distribution, the plots of the pdf (3.5) and cdf (3.6), for different values of degrees of
freedom, ν, are provided in Figs. 3.1 and 3.2, respectively, by using Maple 10. The
effects of the parameter, ν, can easily be seen from these graphs. It is also clear that
the graph of the pdf gx(x) of a Student’s t distribution is symmetric about mean.

3.2 Some Properties of the Student’s t Distribution

This section discusses the mode, moments, mean, variance, coefficients of skewness
and kurtosis, and entropy of the Student’s t distribution. For detailed derivations of
these, see, for example, Lukacs (1972), Dudewicz and Mishra (1988), Johnson et al.
(1995), Rohatgi and Saleh (2001), Balakrishnan and Nevzorov (2003), and Kapadia
et al. (2005), among others.

http://dx.doi.org/10.2991/978-94-6239-061-4_2
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Fig. 3.1 Plots of the Student’s
t pdf, for different values of v

Fig. 3.2 Plots of the Student’s
t cdf, for different values of v

3.2.1 Mode

TheMode or modal value is that value of x for which the probability density function
gx (x) defined by (3.5) is maximum. Now, differentiating Eq. (3.6), we have
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g≡
X (x) = −

(v + 1) x
(
1 + x2

v

)− (v+3)
2

v
∞

vB
( v
2 ,

1
2

) (3.8)

which, when equated to 0, gives the mode to be x = 0. It can be easily seen that
g≡≡
x (0) < 0. Thus, the maximum value of the probability density function gX (x) is

easily obtained from (3.5) as gx (0) = 1∞
vB
(

v
2 , 12

) . Since the equation g≡
v(x) has a

unique root at x = 0 g≡≡
v (x) <0, the Student −t distribution is unimodal.

3.2.2 Moments

For some degrees of freedom v > 0 and some integer r > 0, the r th moment about
the mean of a random variable X having the pdf (3.5) is given by

E
(
Xr ) =


⎛⎝

⎛⎞

vr/2γ
(

r+1
2

)
γ( v−r

2 )

γ
(
1
2

)
γ( v

2 )

0, when r is odd

, when r is even, r < v; (3.9)

Using the properties of gamma function, Eq. (3.9) can be written as

E(Xr ) = vr/2
r/2⎠

j=1

2i − 1

v − 2i
, for even r and 0 < r < v and v > 2.

3.2.3 Mean, Variance, and Coefficients of Skewness and Kurtosis

From the expression (3.9), the mean, variance, coefficients of skewness and kurtosis
of a Student’s t random variable X having the pdf (3.5) are easily obtained as follows:

(i) Mean: ς1 = E (X) = 0, v > 0;
(ii) Variance: V ar (X) = β2 = v

v − 2 , v > 2;

(iii) Coefficient of Skewness: γ1 (X) = β3

β
3/2
2

= 0;

(iv) Coefficient of Kurtosis: γ2 (X) = β4
β2
2

= 3 (v − 2)
v − 4 , v > 4.

Since the coefficient of kurtosis, γ2 (X) > 4 for v > 4, it follows that the Student’s
t distributions are leptokurtic distributions for v > 4.
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3.2.4 Mean Deviation and Coefficient of Variation of a Student’s t
Random Variable

(i) Mean Deviation:
(
2 π 2

σ

) 1
2

(ii) Coefficient of Variation: Undefined

3.2.5 Moment Generating Function

Does not exist (for details, see, for example, Mood et al. (1974), among others).

3.2.6 Entropy

For some degrees of freedom v > 0, entropy of a random variable X having the pdf
(3.5) is easily given by

HX [gx (x)] = E[− ln(gx (X)] = −
∈∫

−∈
gx (x) ln [gx (x)] dx

=
(

v + 1

2

)[

θ

(
v + 1

2

)

− θ
( v

2

)⎩

+ ln

(∞
vB

(
v

2
,
1

2

))

,

(3.10)

where θ (.) and B (.) denote digamma and beta functions, respectively, (see, for
example, Lazo and Rathie (1978), and Kapur (1993), among others). The possible
shape of the entropy for different values of the parameter v is provided in Fig. 3.3,
by using Maple 10. The effects of the parameter v on entropy can easily be seen
from the graph. Clearly, the entropy HX (.) of Student’s t distribution is monotonic
decreasing in v. Moreover, as v → ∈, the entropy HX (.) of Student’s t distribution
tends to 1

2 + 1
2 ln (2σ), which is the entropy of standard normal distribution.

3.2.7 Characteristic Function

The characteristic function of the student’s t distribution is a research topic of consid-
erable importance and interest in statistics both from the theoretical and applications
point of view. It has been studied bymany authors, (among them, Ifram (1970),Mitra
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Fig. 3.3 Plot of the entropy
for v = 1..40

(1978), Pastena (1991), Hurst (1995), Dreier and Kotz (2002) for the characteristic
function of the univariate t distributions, and Joarder and Ali (1996) for the charac-
teristic function of the multivariate t distributions, are notable). The purpose of this
section is to present briefly some of the expressions for the characteristic function
of the Student’s t distribution with degrees of freedom v as developed by different
authors which are provided below (for details, see Johnson et al. (1995), and Dreier
and Kotz (2002), and references therein).

(i) Ifram (1970) derives the characteristic function of the Student’s t distribution
with degrees of freedom v as given by

θx (t) = E
(

eit X
)

= 1

B
( 1
2 ,

v
2

)

∈∫

−∈
eit(

∞
v)x
(
1 + x2

)−
(
1
2+ v

2

)

dx, (3.11)

and discusses both the cases for odd and even degrees of freedom.
(ii) The following expressions for the characteristic function of the Student’s t dis-

tribution are obtained by Mitra (1978):

θX (t) = e−|∞vt| m−1∑

j=0

c j,(m−1)
⎪
⎪∞vt

⎪
⎪ j

,

where m = v+1
2 and the c j,m’s satisfy the following recurrence relations
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c0,m = 1,

c1,m = 1,

c(m−1),m = 1

1.3 . . . (2m − 5)(2m − 3)
,

c j,m = c( j−1),(m−1) + (2m − 3 − j)c j,(m−1)

(2m − 3)
, 1 ≤ j ≤ m − 1.

(iii) Further development on the characteristic function of the Student’s t distribu-
tion continued with the work of Pastena (1991) who provides comments and
corrections to Ifram’s results.

(iv) Using the characteristic function of the symmetric generalized hyperbolic dis-
tribution, Hurst (1995) derives the expression for the characteristic function of
the Student’s t distribution in terms of Bessel functions.

(v) Dreier and Kotz (2002) derived the characteristic function of the Student’s t
distribution with degrees of freedom v as given by

θx (t) = E
(

eit X
)

= 2vv
v
2

γ (v)

∈∫

0

e−(
∞

v)(2x+|t |) [x (x + |t |)]
(

v
2− 1

2

)

dx, t √ �.

(3.12)

3.3 Percentiles

This section computes the percentiles of the Student’s t distribution, by using Maple
10. For any p(0 < p < 1), the (100p)th percentile (also called the quantile of order
p) of the Student’s t distribution with the pdf gx (x) is a number tp such that the area
under gx (x) to the left of tp is p. That is, tp is any root of the equation

G(tp) =
tp∫

−∈
gX (u)du = p. (3.13)

Using the following Maple program, the percentiles tp of the Student’s t distribution
are computed for some selected values of p for the given values of v, which are
provided in Table3.1.

3.4 Different Forms of t Distribution

This section presents different forms of t distribution and some of their important
properties, (for details, see, for example, Whittaker and Robinson (1967), Feller
(1968, 1971), Patel et al. (1976), Patel and Read (1982), Johnson et al. (1994),
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Table 3.1 Percentiles of Student’s t distribution

v 75 % 80 % 85 % 90 % 95 % 99 %

1 1.00000 1.37638 1.96261 3.07768 6.31375 31.82051
5 0.72668 0.91954 1.15576 1.47588 2.01504 3.36493
15 0.69119 0.86624 1.07353 1.34060 1.75305 2.60248
30 0.68275 0.86624 1.05466 1.31041 1.69726 2.45726

Evans et al. (2000), Balakrishnan and Nevzorov (2003), and Kapadia et al. (2005),
among others).

3.4.1 Half t Distribution

A random variable X said to have a half-t distribution with parameters ρ , δ , and ω if
its pdf can be written as

f (x |ρ, δ, ω) = 2
γ(ω + 1/2)

∞
δ

γ(ω/2)
∞

ωσ

[

1 + 1

ω
(
∞

δ(x − ρ)2
⎩−(ω+1/2)

for x > ρ,−∈ < ρ < ∈, δ > 0, ω > 0 (3.14)

Note that, as ω → ∈ in Eq. (3.14), the half-t distribution approaches the half-
normal distribution, which follows from the definition of the exponential function,
lim

t→∈
(
1 + x

t

)t = ex . Also, note that as ω → 0 in Eq. (3.14), the right-hand tail of

the half-t distribution becomes increasingly heavier relative to that of the limiting
half-normal distribution, obtained as ω → ∈.

3.4.2 Skew t Distribution

A random variable X is said to have the skew-t distribution if its pdf is f(x) =
2g(x)G(ωx), where g(x) and G(x), respectively, denote the pdf and the cdf of the
Student’s t distribution with degrees of freedom v. For different degrees of freedoms
the skew t density are given in Fig. 3.4.

3.5 Summary

In this chapter, we first present the motivation and importance of studying the
Student’s t distribution. Then some basic ideas, definitions and properties of the
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Fig. 3.4 Parameters of the Skew-t density: location = 0; scale = 2; ς = 50; v = 4 and 40

Student’s t distributions have been reviewed. The entropy of a random variable
having the Student’s t distributions has been given. The expressions for different
forms of the characteristic function of the Student’s t distribution are provided. As a
motivation, different forms of the Student’s distribution, such as Half-t and Skew-t
distributions, which are areas of current research, have been provided.



Chapter 4
Sum, Product and Ratio for the Normal Random
Variables

4.1 Introduction

The distributions of the sum, product, and ratio of two independent random variables
arise in many fields of research, for example, automation, biology, computer sci-
ence, control theory, economics, engineering, fuzzy systems, genetics, hydrology,
medicine, neuroscience, number theory, statistics, physics, psychology, reliability,
risk management, etc. (for details, see Grubel (1968), Rokeach and Kliejunas (1972),
Springer (1979), Kordonski and Gertsbakh (1995), Ladekarl et al. (1997), Amari and
Misra (1997), Sornette (1998), Cigizoglu and Bayazit (2000), Brody et al. (2002),
Galambos and Simonelli (2005), among others). The distributions of the sum X +Y ,
product XY, and ratio X/Y, when X and Y are independent random variables and
belong to the same family, have been extensively studied bymany researchers, among
them, the following are notable:

(a) Ali (1982), Farebrother (1984), Moschopoulos (1985), Provost (1989a), Pham-
Gia and Turkkan (1994), Kamgar-Parsi et al. (1995), Hitezenko (1998), Hu and
Lin (2001), Witkovsky (2001), and Nadarajah (2006a) for the sum X + Y .

(b) Sakamoto (1943), Harter (1951) and Wallgren (1980), Springer and Thompson
(1970), Stuart (1962) and Podolski (1972), Steece (1976), Bhargava and Khatri
(1981), Abu-Salih (1983), Tang and Gupta (1984), Malik and Trudel (1986),
Rathie and Rohrer (1987), Nadarajah (2005a, b), Nadarajah and Gupta (2005),
Nadarajah and Kotz (2006a) for the product XY.

(c) Marsaglia (1965), and Korhonen and Narula (1989), Press (1969), Basu and
Lochner (1971), Shcolnick (1985), Hawkins and Han (1986), Provost (1989b),
Pham-Gia (2000), Nadarajah (2005c, 2006b), Nadarajah and Gupta (2005,
2006), and Nadarajah, and Kotz (2006b) for the ratio X/Y.

The algorithms for computing the probability density function of the sum and product
of two independent random variables, along with an implementation of the algorithm
in a computer algebra system, have also been developed by many authors, among
them, Agrawal and Elmaghraby (2001), and Glen et al. (2004) are notable.
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This chapter presents the distributions of the sum X + Y , product XY, and ratio
X/Y when X and Y are independent random variables and have the same normal
distributions. For the sake of completeness, the definitions of sum, product, and ratio
of two independent randomvariables are given below, (for details, see Lukacs (1972),
Dudewicz and Mishra (1988), Rohatgi and Saleh (2001), Kapadia et al. (2005), and
Larson and Marx (2006), among others).
Let X and Y be any two independent, absolutely continuous random variables with

pdfs fX (x) and fY (y), respectively. Note that the sum X + Y , product XY, and ratio
X/Y of X and Y are also random variables, (for details, see Lukacs (1972), among
others).

4.1.1 Definition (Distribution of a Sum)

Let Z = X + Y for −→ < X, Y < +→. Then

(i) FZ (z) = P (Z ∈ z) = P (X + Y ∈ z) =
→∫

−→
fX (x)FY (z − x) dx (4.1)

(ii) fZ (z) =
→∫

−→
fX (x) fY (z − x) dx (4.2)

(iii) Convolution: The probability density function fZ (z) in (ii) above is also called
the convolution of the pdfs fX (x) and fY (y), which is expressed as { fZ (z)} =
{ fX (z)} ∀ { fY (z)}.

4.1.2 Definition (Distribution of a Product)

Let W = XY for −→ < X, Y < +→. Then

(i) FW (w) = P (W ∈ w) = P (XY ∈ w) = P
(
X ∈ w

Y

)

=






→∫

0
FX

(
w
y

)
fY (y) dy, Y > 0

FY (0) −
0∫

−→
FX

(
w
y

)
fY (y) dy, Y < 0

(4.3)
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(ii) fW (w) =






→∫

0

1
y fX

(
w
y

)
fY (y) dy, Y > 0, −→ < w < →

→∫
−→

∣
∣
∣ 1y

∣
∣
∣ fX

(
w
y

)
fY (y) dy, Y < 0, −→ < w < →

(4.4)

4.1.3 Definition (Distribution of a Ratio)

Let U = X
Y for −→ < X, Y < +→. Then

(i)
FU (u) = P (U ∈ u) = P

( X
Y ∈ u

) = P (X ∈ uY )

=






→∫

0
FX (uy) fY (y) dy, Y > 0

FY (0) −
0∫

−→
FX (uy) fY (y) dy, Y < 0

(4.5)

(ii)

fU (u) =






→∫

0
y fX (uy) fY (y) dy, Y > 0, −→ < u < →

→∫
−→

|y| fX (uy) fY (y) dy, Y < 0, −→ < u < →
(4.6)

4.1.4 Mean and Variance of the Sum and Product of Independent
Random Variables

Let X and Y be any two independent, absolutely continuous random variables with
pdfs fX (x) and fY (y), respectively. Suppose that the first and second moments of
both X and Y exist. Then

(i) E (X + Y ) = E (X) + E (Y )

(ii) E (XY ) = E (X)E (Y )

(iii) Var (X + Y ) = Var (X) + Var(Y ).

Note that the above results can be extended to any finite sums or products of indepen-
dently distributed random variables, (for details, see Lukacs (1972), and Dudewicz
and Mishra (1988), among others).
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Fig. 4.1 Plot of the
Z = X + Y ∞
N
(
μ = 0, σ 2 = 2

)

4.2 Distribution of the Sum of Independent Normal Random
Variables

This section presents the distributions of the sum of independent normal random
variables as described below.

(i) Let X and Y be two independent N (0, 1) random variables. Then Z = X +Y ∞
N (0, 2) with pdf given by

fZ (z) = 1
2
≤

π
e−z 2 /4,−→ < z < →,

(for details, see Dudewicz and Mishra (1988), and Balakrishnan and Nevzorov
(2003), among others). A Maple plot of this pdf is given in Fig. 4.1.

(ii) Let X ∞ N
(
μX , σ 2

X

)
and Y ∞ N

(
μY , σ 2

y

)
be two independent random vari-

ables. Then Z = X + Y ∞ N
(
μX + μY , σ 2

X + σ 2
Y

)
with pdf given by

fZ (z) = 1
⎧
2π
(
σ 2

X + σ 2
Y

)e−(z − μX − μY ) 2 /2
(
σ 2

X + σ 2
Y

)
, −→ < z < →, (4.7)

(for details, see Lukacs (1972), and Balakrishnan and Nevzorov (2003), among
others).

(iii) Let X1, X2, ..., Xn be a set of independently distributed N
(
μi , σ

2
i

)

(i = 1, 2, ..., n) random variables. Let Z =
n⎨

i=1
ci Xi where ci are some con-

stants. Then Z ∞ N

⎩
n⎨

i=1
ciμi ,

n⎨

i=1
c2i σ

2
i

)

, (for details, see Lukacs (1972),

Dudewicz and Mishra (1988), and Kapadia et al. (2005), among others).
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Note that the mean and variance of the sum of independent normal random variables
can be easily derived by following the above Sect. 4.1.4.

4.3 Distribution of the Product of Independent Normal Random
Variables

This section presents the distributions of the product of independent normal random
variables as described below, (for details, see Epstein (1948), Zolotarev (1957),
Kotlarski (1960), Donahue (1964), Springer and Thompson (1966, 1970), Lomnicki
(1967), and Glen et al. (2002), among others).

(i) Let X1, X2, ..., Xn be a set of independently distributed N
(
0, σ 2

i

)

(i = 1, 2, ..., n) random variables. Let W =
n⎛

i=1
Xi . Then the random variable

W follows a distribution with pdf given, in terms of a Meijer G-function, by

gW (w) = H Gn 0
0 n

⎝

w2
n⎞

i=1

1

2 σi
| 0
⎠

(4.8)

where H is a normalizing constant given by

H =
[

(2π)
n
2

n⎞

i=1

σi

⎪−1

,

(for details, see Springer and Thompson (1966, 1970)), where Gn0
0n

⎩

w2
n⎛

i=1

1
2σi

|0
)

denotes the Meijer G-Function. It is defined as follows

Gm,n
p,q

(
x |a1,...,ap

b1,...,bq

)
= 1

2π i

∫

L

x−t κ(b1+t)···κ(bm+t)κ(1−a1−t)···κ(1−an−t)
κ(an+1+t)···κ(ap+t)κ(1−bm+1−t)···κ(1−bq−t)dt ,

where (e)k = e(e + 1) · · · (e + k − 1) denotes the ascending factorial and L denotes
an integration path (for details on Meijer G-Function, see, Gradshteyn and Ryzhik
(2000), Sect. 9.3, p. 1068).

(ii) Let X andY be independently distributed as N (0, 1), and Z=XY. Then the char-
acteristic function of the product of two independent normal random variables
is given by:

E(eit XY ) = EY (E(i t XY |Y )

http://dx.doi.org/10.2991/978-94-6239-061-4_9
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Fig. 4.2 Plot of the PDF of
W = XY , when X ∞ N (0, 1)
and Y ∞ N (0, 1)

That is,
E(i t XY |Y ) = e− 1

2 t2Y 2

Thus we have,

EY (E(i t XY |Y ) = 1≤
2π

∫ →

−→
e− 1

2 t2y2

e− 1
2 y2dy

= 1≤
1 + t2

Inverting this characteristic function we get the pdf of Z as

fZ (z) = 1

π
K0(z),

where K0(z) is the Bessel function of the second kind.

(iii) Let X ∞ N
(
0, σ 2

X

)
and Y ∞ N

(
0, σ 2

y

)
be two independent random variables.

Let W = XY . Then the random variable W = XY follows a distribution with
pdf given by

fW (w) = 1

πσXσY
K0

⎩
w

σXσY

)

, (4.9)

where K0 (.) denotes modified Bessel function of the second kind, (for details, see
Lomnicki (1967), and Glen et al. (2002), among others). A Maple plot of the pdf of
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the random variable W = XY , when X ∞ N (0, 1) and Y ∞ N (0, 1), is given in
Glen et al. (2002), which, for the sake of completeness, is reproduced and presented
in Fig. 4.2.

(iv) Alternative Derivation of the PDF (4.9) of the Product of Two Indepen-
dently Distributed Normal Random Variables:
Suppose X1 and X2 are two independently distributed N (0, σ 2

i ), i = 1.2, ran-
dom variables, and Y = X1X2, then the pdf fY (y) of Y is given by

fY (y) = 1

πσ1σ2
K0

⎩
y

σ1σ2

)

,

where K0(x) is the modified Bessel function of the second kind (see Abramowitz
and Stegun (1970, p. 376).

Proof. Let αY (t) be the characteristic of Y, then

αY (t) =
∫ →

−→
1

σ1
≤
2π

e
= x2

2σ21

⎝∫ →

−→
eitxy 1

σ2
≤
2π

e
= y2

2σ22 dy

⎠

dx

=
∫ →

−→
1

σ1
≤
2π

e
− x2

2σ21 e− t2x2σ22
2 dx

=
∫ →

−→
1

σ1
≤
2π

e
− x2

2σ21
(1+t2σ 2

1 σ 2
2 )

dx

Let x
⎧

(1 + t2σ 2
1 σ 2

2 ) = u, then

αY (t) = 1
⎧
1 + t2σ 2

1 σ 2
2

∫ →

−→
1

σ1
≤
2π

e
− u2

2σ22 du

= 1
⎧
1 + t2σ 2

1 σ 2
2

Using the inverse of the characteristic function, the pdf fY (y) of Y is given by

fY (y) = 1

2π

∫ →

−→
e−i t y 1

⎧
1 + t2σ 2

1 σ 2
2

dt

= 1

π

∫ →

0

cos t y
⎧
1 + t2σ 2

1 σ 2
2

dt

Using the transform tσ1σ2 = w, we obtain
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fY (y) = 1

πσ1σ2

∫ →

0

cos( y
σ1σ2

w)≤
1 + w2

dw

= 1

πσ1σ2
K0(

y

σ1σ2
),

where K0(.) is the Bessel function of the second kind. This completes the proof.

(v) Distribution of the Product of Two Independently Distributed Standard
Normal Random Variables: As a special case of the Eq. (4.9) in (iii) above, for
the sake of completion, using the definition of the characteristic function of a
random variable, we derive below independently the distribution of the product
of two independently distributed standard normal random variables.

Let X and Y be independently distributed random variables as N (0, 1), and Z = XY.
Then the characteristic function of the product of two independent normal random
variables is given by:

E(eit XY ) = EY (E(i t XY |Y ).

That is,

E(i t XY |Y ) = e− 1
2 t2Y 2

.

Thus, we have

EY (E(i t XY |Y ) = 1≤
2π

∫ →

−→
e− 1

2 t2y2

e− 1
2 y2dy

= 1≤
1 + t2

Inverting this characteristic function, we get the pdf of Z as given below

fZ (z) = 1

π
K0(z), (4.10)

where K0(z) is the Bessel function of the second kind. Obviously, Eq. (4.10) is a
special case of Eq. (4.9), when σX = 1 and σY = 1.

(vi) Let X1, X2, ..., Xn be a set of independently distributed N (0, 1) (i = 1, 2, ..., n)

random variables. Let K =
n⎨

i=1
X2

i . Then the random variable K =
n⎨

i=1
X2

i

follows a chi-square distribution with n degrees of freedom whose pdf is given
by

{
pK(k) = 1

2
n
2 κ( n

2 )
w

n
2 − 1 e

−k
2 if k > 0,

= 0 if w < 0.
, (4.11)
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Fig. 4.3 Plots of K =
n⎨

i=1
X2

i ,

where each Xi ∞ N (0, 1)

with the Mean (K)=n and Variance (K)=2n. Note that the random variable

K =
n⎨

i=1
X2

i also follows a gamma
( 1
2 ,

n
2

)
distribution, (for details, seeLukacs (1972),

and Kapadia et al. (2005), among others). A Maple plot of the pdf (4.11) in (vi) is
given in Fig. 4.3.

4.4 Distribution of the Ratio of Independent Normal Random
Variables

In many statistical analysis problems, the ratio of two normally distributed random
variables plays a very important role. The distributions of the ratioX/Y, when X andY
are normally random variables, have been extensively studied by many researchers,
notable among themareGeary (1930), Fieller (1932), Curtiss (1941),Kendall (1952),
Marsaglia (1965), Hinkley (1969), Hayya et al. (1975), Springer (1979), Cedilnik
(2004), and Pham-Gia et al. (2006). This section presents the distributions of the
ratio of independent normal random variables as described below.

(i) Let X ∞ N (0, 1) and Y ∞ N (0, 1) be two independent random variables. Let
U = X/Y . Then the random variable U = X/Y follows a standard Cauchy
distribution with pdf and cdf respectively given by
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Fig. 4.4 Plot of U = X/Y ,
where X ∞ N (0, 1) and
Y ∞ N (0, 1)

fU (u) = 1

π
(
1 + u2

) , −→ < u < →, and

FU (u) = 1

2
+ 1

π
arc tan (u) , −→ < u < →, (4.12)

(for details, see Feller (1971), Casella andBerger (2002), and Severini (2005), among
others). A Maple plot of the pdf (4.12) in (i) is given in Fig. 4.4.

(ii) Let X ∞ N
(
0, σ 2

X

)
and Y ∞ N

(
0, σ 2

y

)
be two independent random variables.

Let U = X/Y . Then the random variable U = X/Y follows a generalized form
of Cauchy distribution with pdf given by

fU (u) = σXσY

π
(
σ 2

X + σ 2
Y u2
) , −→ < u < → (4.13)

(for details, see Pham-Gia et al. (2006), among others).

(iii) Let X ∞ N
(
0, σ 2

X

)
and Y ∞ N

(
0, σ 2

y

)
be two independent random variables.

LetU = X/Y . IfσX ∃= 0, σY ∃= 0 orγ ∃= 0, then the randomvariableU = X/Y
follows a more general Cauchy distribution with pdf given by

fU (u) = 1

π

[
φ

(u − ς)2 + φ2

]

, −→ < u < →, (4.14)

where γ is the coefficient of correlation between X and Y , and
ς = γ σX

σY
and φ = σX

σY

√
1 − γ2. Note that for γ = 0, this pdf reduces to Cauchy

distribution C
(
0, σX

σY

)
as given in Eq. (4.13) in (ii) above. Also for γ = 0, σX =

σY = 1, we have a standard Cauchy distribution C (0, 1) as given in Eq. (4.12) in (i)
above.
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(iv) Let X ∞ N
(
μX , σ 2

X

)
and Y ∞ N

(
μY , σ 2

y

)
be two independent random

variables, (that is, cor (X, Y ) = 0). Let U = X/Y . Then, following Hink-
ley (1969), the pdf of the random variable U = X/Y is given by

fU (u) = b (u) · c (u)

a3 (u)

1≤
2π σXσY

[

2 β

⎩
b (u)

a (u)

)

− 1

]

+ 1

a2 (u) . πσXσY



⎢
⎢
e

− 1
2






⎝
μX

σX

⎠2

+
⎝
μY

σY

⎠2





⎫

⎬
⎬
⎭

(4.15)

where

a(u) =
⎡

1

σ 2
x

u2 + 1

σ 2
Y

, b(u) = μX

σ 2
x

u2 + μY

σ 2
Y

,

c(u) = e
1
2

b2(u)

a2(u)
− 1

2

⎣(
μX
σX

)2 +
(

μY
σY

)2
⎤

,

and

β(t) =
t∫

−→

1≤
2π

e− 1
2 v2dv,

denote the standard normal cumulative distribution function. It is easy to see that the
above pdf reduces to a standard Cauchy distribution C (0, 1) if
μX = μY = 0, and σX = σY = 1, that is, b (u) = 0.

(v) Recently, in a very detailed paper, Pham-Gia et al. (2006) have considered the
density of the ratio X/Y of two normal random variables X and Y and appli-
cations, and have obtained some closed form expressions of the pdf of X/Y in
terms of Hermite and Kummer’s confluent hypergeometric functions, by con-
sidering all cases, that is, when X and Y are standardized and nonstandardized,
independent or correlated, normal random variables. For the sake of brevity,
only the case when X and Y are independent normal random variables is stated
below. For other cases and applications, please visit Pham-Gia et al. (2006). Let

X ∞ N
(
μX , σ 2

X

)
and Y ∞ N

(
μY , σ 2

y

)
be independent normal random vari-

ables. Let U = X
Y . Then, following Pham-Gia et al. (2006), the random variable

U = X
Y has a distribution with pdf given by

fU (u) = K1.
⎦
1F1

(
1; 1

2 ; θ1 (u)
)]

σ 2
X + σ 2

Y u2
, −→ < u < → (4.16)
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where 1F1 (.) denotes Kummer’s confluent hypergeometric function, and

θ1 (u) = 1

2σ 2
X σ 2

Y

.

[(
μY σ 2

X + uμXσ 2
Y

)2

σ 2
X + σ 2

Y u2

⎪

≥ 0,

and K1 = σX σY
π

e
− 1

2

⎣(
μX
σX

)2 +
(

μY
σY

)2
⎤

.
By using the following relation

H−2 (s) + H−2 (−s) = 1F1

⎩

1; 1

2
; s2

)

, ≡s,

where Hθ (s) denotes Hermite function (for details, see Lebedev (1972, pp. 283–299,
among others), it is easy to see that the random variableU = X

Y follows a distribution
with pdf given, in terms of Hermite function, as

fU (u) = K1.
{

H−2
(≤

θ1 (u)
)}

σ 2
X + σ 2

Y u2
, 0 ∈ u < →, (4.17)

where

θ1 (u) = 1

2σ 2
X σ 2

Y

.

[(
μY σ 2

X + uμXσ 2
Y

)2

σ 2
X + σ 2

Y u2

⎪

≥ 0,

K1 =




σXσY

⎛2
i = 1

[
1 − β

(−μi
σi

)]





e

− 1
2

⎣(
μX
σX

)2 +
(

μY
σY

)2
⎤

,

and

β(t) =
t∫

−→

1≤
2π

e− 1
2 v2dv

denote the standard normal cumulative distribution function.
The above results of Pham-Gia et al. are valid ≡σX , σY > 0, and ≡μX , μY √

R(set of real numbers). Since 1F1
(
1; 1

2 ; 0
) = 1, it is easy to see that, when μX =

μY = 0, the random variable U = X/Y follows a generalized form of Cauchy
distribution with pdf given by

fU (u) = σXσY

π
(
σ 2

X + σ 2
Y u2
) , −→ < u < →, (4.18)

which reduces to the pdf of a standard Cauchy distribution C (0, 1) when σX = σY .



4.4 Distribution of the Ratio of Independent Normal Random Variables 75

(vi) The following results about the ratio X/Y of two normal random variables X
and Y found in the literature are also worth noting.

A. Kendall (1952), Kapadia et al. (2005, pp. 210–211): Let X ∞ N
(
μX , σ 2

X

)
and

Y ∞ N
(
μY , σ 2

y

)
be independent normal random variables. Assume that μY

is so large compared to σy that the range of Y is effectively positive. Then, as
obtained by Kendall (1952), the random variable U = X/Y has a distribution
with pdf given by

fU (u) = 1≤
2π




(
μY σ 2

X + μX uσ 2
Y

)

(
σ 2

X + u2σ 2
Y

) 3
2

⎫

⎭ e

[

− 1
2

(uμY − μX )2

(σ2X + σ2Y u2)

]

,

− → < u < → (4.19)

B. Kamerud (1978) has obtained a particular Cauchy-like distribution by consider-
ing the ratio X/Y of two non-centered independent normal random variables X
and Y.

C. Marsaglia (1965) has investigated the ratio X/Y of two arbitrary normal random
variables X and Y , and has also obtained a Cauchy-like distribution.

D. Mood et al. (1974, p. 246), Patel et al. (1976, p. 209): Let X ∞ N (0, 1) and Y ∞
N (0, 1) be independent standard normal random variables. Let U = (X/Y )2.

Then the randomvariableU = (X/Y )2 has anFdistributionwith pdf fU (u, 1, 1).

4.5 Distributions of the Sum, Product and Ratio of Dependent
Normal Variables

Since the distribution of the sums, differences, products and ratios (quotients) of ran-
dom variables arise in many fields of research such as automation, biology, computer
science, control theory, economics, engineering, fuzzy systems, genetics, hydrology,
life testing, medicine, neuroscience, number theory, statistics, physics, psychology,
queuing processes, reliability and risk management, among others, the derivations of
these distributions for dependent (correlated) randomvariables have also received the
attention of many authors and researchers. For detailed discussions on the sum, dif-
ference, product and ratio of dependent (correlated) random variables, the interested
readers are referred to Springer (1979), and references therein.
In what follows, we provide the distributions of the sums, differences, products

and ratios of dependent (correlated) normal variables.
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4.5.1 Some Basic Definitions

For the sake of completeness, some basic definitions are given below.
Let X and Y be any two absolutely continuous random variables with p.d.f.’s fX (x)

and fY (y) respectively. Let fX,Y (x, y) be the joint p.d.f. of X and Y .

Definition 4.5.1. The random variables X and Y are said to dependent if and only
if

fX,Y (x, y) ∃= fX (x) . fY (y) , ≡ (x, y) √ �2, � = {all real numbers};

otherwise X and Y are said to be independent.

Definition 4.5.2. The correlation coefficient between the random variables X and
Y , denoted by rXY , is defined as

rXY = σXY

σXσY
,

where σXY denotes the covariance of X and Y , σX is the standard deviation of X ,
and σY is the standard deviation of Y . The random variables X and Y are said to
correlated if the correlation coefficient between them, that is, rXY ∃= 0; otherwise
X and Y are said to be uncorrelated.

Remark 4.5.1. It can easily be seen that two independent random variables are
uncorrelated. But the converse is not true, that is, two uncorrelated random variables
may not be independent. For example, if a random variable X has a standard nor-
mal distribution and Y = X2, then it is easy to see that X and Y are uncorrelated
but not independent. For details on correlation and dependence (independence), the
interested readers are referred to Lukacs (1972), Tsokos (1972), Springer (1979),
Dudewicz and Mishra (1988), Rohatgi and Saleh (2001), Mari and Kotz (2001), and
Gupta and Kapoor (2002), among others.

Definition 4.5.3. Let

Z = X + Y, U = X − Y, V = XY, and W = X/Y

denote the sum, difference, product, and ratio of the random variables X and Y
respectively. Then, following Theorem 3, p. 139, of Rohatgi and Saleh (2001), the
p.d.f.’s of Z , U , V , and W are, respectively, given by

fZ (z) =
+→∫

−→
f (x, z − x)dx,
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fU (u) =
+→∫

−→
f (u + y, y)dy,

fV (θ) =
→∫

−→
f
(

x,
θ

x

) 1

|x |dx,

and

fW (w) =
→∫

−→
f (xw, x) |x | dx .

4.5.2 Distributions of the Sums and Differences of Dependent
(Correlated) Normal Random Variables

Here, the distributions of the sums and differences of dependent (correlated) normal
random variables are briefly provided. For details, one is referred to Springer (1979,
pp. 67–75), among others.
Let X1 and X2 denote the two dependent (correlated) normal random variables

(r.v.’s) with zero mean, correlation coefficient γ, and variances σ 2
1 and σ 2

2 , respec-
tively. Let Z∀

S = X1 + X2 denote the sum of X1 and X2, with the p.d.f. g (z∀). Then,
following Springer (1979), the joint p.d.f. of X1 and X2 is given by

f (x1, x2) = 1

2πσ1σ2
(
1 − γ2

)1/2 exp

[

− 1

2
(
1 − γ2

)

⎝
x21
σ 2
1

− 2γx1x2
σ1σ2

+ x22
σ 2
2

⎠⎪

,

|γ| < 1, −→ < xi < →, σi > 0, i = 1, 2, (4.20)

whereas the p.d.f of the sum Z∀
S = X1 + X2 is given by

g
(
z∀) = 1

≤
2π
⎧

σ 2
1 + 2γσ1σ2 + σ 2

2

exp

[

− z2

2
(
σ 2
1 + 2γσ1σ2 + σ 2

2

)

⎪

,

|γ| < 1, −→ < z < →. (4.21)

Obviously Z∀
S ∞ N

(
0, σ 2

1 + 2γσ1σ2 + σ 2
2

)
. It follows that if X1 ∞ N

(
μ1, σ

2
1

)
and

X2 ∞ N
(
μ2, σ

2
2

)
, and ZS = X1+X2, then ZS ∞ N

(
μ1 + μ2, σ

2
1 + 2γσ1σ2 + σ 2

2

)
.

Remark 4.5.2. Similar to the above, it can easily be shown that if X1 ∞ N
(
μ1, σ

2
1

)

and X2 ∞ N
(
μ2, σ

2
2

)
, and Z D = X1 − X2, then Z D ∞ N

(
μ1 − μ2, σ

2
1 − 2γσ1σ2

+ σ 2
2

)
.
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Remark 4.5.3. It is interesting to note that the following transformation

y1 = 1
(
1 − γ2

)1/2

⎩
x1
σ1

− γx2
σ2

)

, and y2 = x2
σ2

,

to the above joint p.d.f. of the two dependent (correlated) normal random variables
X1 and X2 with zero mean, correlation coefficient γ, and variances σ 2

1 and σ 2
2 ,

respectively, gives

g (y1, y2) =
⎩

1≤
2π

e−y21/2
)⎩

1≤
2π

e−y22/2
)

,

that is, the transformed random variables Y1 and Y2 are independent and standard
normally distributed, but the original random variables X1 and X2 are dependent
(correlated) normal random variables. For details, see Springer (1979).

Remark 4.5.4. For the p.d.f. of the sum of n dependent (correlated) normal r.v.’s,
which can be obtained in the same manner, see Springer (1979, Eq.3.4.20, p. 72).

Remark 4.5.5. However, in general, normality of marginal random variables X1
and X2 does not imply normality of their joint distribution and thus does not imply
normality of their sum. For example, it has been observed by Holton (2003) and
Novosyolov (2006) that the sum of dependent normal variables may be not normal.

4.5.3 Distributions of the Products and Ratios of Dependent
(Correlated) Normal

Random Variables: In what follows, the distributions of the product and ratio of
dependent (correlated) normal random variables are briefly provided. For details,
one is referred to Springer (1979, p. 151), and references therein.
Let X1 ∞ N (0, 1) and X2 ∞ N (0, 1) denote the two dependent (correlated) nor-

mal random variables (r.v.’s) with zero mean, variances 1, and correlation coefficient
γ. Let Y = X1X2 denote the product of X1 and X2, with the p.d.f. h (y). Also, let
W = X1

X2
denote the quotient of X1 and X2, with the p.d.f. g (w). Then, following

Springer (1979), the p.d.f. of the product Y = X1X2 is given by

h (y) = 1

π
(
1 − γ2

)1/2 exp

[
γ y

1 − γ2

]

K0

[
y

1 − γ2

]

, |γ| < 1,

− → < y < →, (4.22)

where K0 (x) is the modified Bessel function of the second kind of order zero. The
p.d.f of the quotient W = X1

X2
is given by

http://dx.doi.org/10.2991/978-94-6239-061-4_3
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g (w) =
(
1 − γ2

)1/2

π

1

w2 − 2γw + 1
, |γ| < 1, −→ < w < →.

Remark 4.5.6. For the p.d.f. of the quotient W = X1/X2, where X1 ∞ N
(
μ1, σ

2
1

)

and X2 ∞ N
(
μ2, σ

2
2

)
denote the two dependent (correlated) normal random vari-

ables (r.v.’s), with meansμi , variances σ 2
i (i = 1, 2), and correlation coefficient γ,

see Hinkley (1969).

4.6 Summary

First, this chapter presents some basic definitions and ideas on the sum, product,
and ratio of two independent random variables. The distributions of the sum X + Y,
product XY, and ratio, X/Y, when X and Y are independent random variables and
have the normal distributions, have been reviewed in details. A short discussion,
when X and Y are dependent or correlated, is also provided. The expressions for
the pdfs as proposed by different authors are presented. By using Maple programs,
various graphs have been plotted.



Chapter 5
Sum, Product and Ratio for the Student’s t
Random Variables

This chapter presents the distributions of the sum X + Y , product XY, and ratio X/Y
whenX and Y are independent random variables and have the Student’s t distributions
with appropriate degrees of freedoms.

5.1 Distribution of the Sum of Independent Student’s t Random
Variables

The distributions of the sum of independent Student’s t random variables play an
important role in many areas of research. The general theories of the distributions
of linear combinations of independent Student’s t random variables began with the
work of Behrens (1929) and later by Fisher (1935). Further developments continued
with the contributions of Bose and Roy (1938), Sukhatme (1938), Fisher (1939,
1941), Chapman (1950), Fisher and Healy (1956), Fisher and Yates (1957), James
(1959), Ruben (1960), Patil (1965), Scheffe (1970), Ghosh (1975), Walker and Saw
(1978), and recently by Fotowicz (2006) and Nadarajah (2006a). The distributions
of the weighted sum of independent Student’s t random variables in some cases are
described below.

(i) Distribution of the weighted sum of two Student’s t random variables:
Fisher (1935), in his studies of thefiducial argument in statistical inference, developed
a statistic, called the Behrens-Fisher statistic, in the form of a weighted sum Z =
σXm + πYn for the given Student’s t random variables Xm and Yn of degrees of
freedom m and n, respectively. By approximating the integral of the fiducial density
of Z through a Riemann sum, Sukhatme (1938) computed the percentage points of
the distribution of Z. On the other hand, Chapman (1950) considered the case when
σ = π = 1 and m = n = κ (say), and derived an expression for the density of
Z for odd values of κ and computed the values of the cdf of Z through numerical
integration.

M. Ahsanullah et al., Normal and Student’s t Distributions and Their Applications, 81
Atlantis Studies in Probability and Statistics 4, DOI: 10.2991/978-94-6239-061-4_5,
© Atlantis Press and the authors 2014
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(ii) Distribution of the difference (or sum) of two Student’s t random variables:
Let Xm and Yn be two independent Student’s t random variables with pdfs fX (x)

and fY (y), and degrees of freedom m > 0 and n > 0, respectively. Then, for
m = n > 0, Ghosh (1975) derived the pdf of the random variable Z = Xm − Yn

given by

fz (z) =
+→∫
−→

fY (y) fY (z + y) dy = α
(
1
2 n+ 1

2

)
α
(

n+ 1
2

)

2n
∈

nα2
(
1
2 n
)
α
(
1
2 n+1

)
(

4n
4n+z2

)n+1 ×

×2F1

(
1
2 , n + 1

2 ; 1
2n + 1; z2

4n+z2

)
, −→ < z < →

(5.1)

where 2F1 (.) denotes Gauss hypergeometric function. Further, whenm ∀= n, Ghosh
(1975) also derived an approximation of the distribution of Z = Xm − Yn by
using a series expansion. The results of Ghosh (1975) are applicable to the sum
Z = Xm + Yn as well, since Xm − Yn and Xm + Yn are identically distributed.

(iii) Distribution of the linear combinations of Student’s t random variables:
Walker and Saw (1978) have considered the distribution of a linear combination of
independent Student’s t random variables X1, X2, . . . , Xn , with degrees of freedom
v1, v2, . . . , vn , respectively, given by

Z∞ = c1X1 + c2X2 + · · · + cn Xn .

where c1, c2, . . . , cn denote the real arbitrary coefficients. For odd degrees of free-
dom, they derived the cdf of Z∞ as a mixture of Student’s t distributions, which
enables one to calculate the percentage points using only tables of the t distribution.
If κi = 1 for i = 1, 2, . . . , n, the random variable Z∞ will have the Cauchy distrib-
ution. Further, Z∞ will have the normal distribution if κi ≤ → ∃i . The distribution
of Z∞ does not have a closed form when 1 < κi < →, for some i , (for details, see
Walker and Saw (1978), among others).

(iv) Special cases:
(a) Let X and Y be two independent standard Student’s t random variables each with
1 degree of freedom, and pdfs fX (x) and fY (y), respectively. Let Z = X + Y .
Then, the pdf of the random variable Z given by

fz (z) =
+→∫

−→
fX (x) fY (z − x) dx = 2

γ(4 + z2)
, −→ < z < →, (5.2)

which is also the pdf of the sum of two standard Cauchy random variables X ≥
C(0, 1) and Y ≥ C(0, 1), (for details, see Kapadia et al. (2005), among others).
The above expression is also easily obtained by substituting n = 1 in the Eq. (5.1)
above, and noting that 2F1 (σ, π;π; t) = (1 − t)−σ , (for details, see Abramowitz
and Stegun (1970), Lebedev (1972), Prudnikov et al. (1986), and Gradshteyn and
Ryzhik (2000), among others). A Maple plot of the above pdf is given in Fig. 5.1.
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Fig. 5.1 Plot of Z = X + Y ,
where X and Y are standard
Student’s t random variables
having 1 degree of freedom
each

(b) The general form of the pdf of the sum of n independent Student’s t random
variables X1, X2, . . . , Xn , each having 1 degree of freedom, is given by

fz (z) = n

γ(n2 + z2)
, −→ < z < →, (5.3)

which is also the pdf of the sum of n standard Cauchy random variables, (for details,
see Kapadia et al. (2005), among others).
(c) Let X and Y be two independent standard Student’s t random variables with

2 degrees of freedom, and pdfs fX (x) and fY (y), respectively. Let Z = X + Y .
Then, by substituting n = 2 in the expression for pdf in Eq. (5.1), and using the
equation (7.3.2.106/p 474) from Prudnikov et al. volume 3 (1986), the pdf of the
random variable Z is obtained as follows

fz (z) = 2

[(
8 + z2

)
K

(
z∈

8 + z2

)

+
(
8 − z2

)
D

(
z∈

8 + z2

)]

,−→ < z < →,

(5.4)
where D (.) and K (.) denote the complete elliptic integrals.
(d) Let X and Y be two independent standard Student’s t random variables with 3

degrees of freedom, and pdfs fX (x) and fY (y), respectively. Let Z = X + Y . Then,
by substituting n = 3 in the expression for pdf in (i) above as derived by Ghosh
(1975), and using the equation (7.3.2.121/p 475) from Prudnikov et al. volume 3
(1986), the pdf of the random variable Z is obtained as follows

fz (z) = 12
∈
3
(
60 + z2

)

γ
(
12 + z2

)3 , −→ < z < → (5.5)
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Fig. 5.2 Plot of Z = X + Y ,
where X and Y are standard
Student’s t random variables
having 3 degrees of freedom
each

Fig. 5.3 Plot of Z = X + Y ,
where X and Y are standard
Student’s t random variables
with 5 degrees of freedom

A Maple plot of the above pdf is given in Fig. 5.2, which certainly represent a sym-
metric distribution.
(e) Let X and Y be two independent standard Student’s t random variables with 5

degrees of freedom, and pdfs fX (x) and fY (y), respectively. Let Z = X +Y . Then,
the pdf of the random variable Z is given by

fz (z) = 400
∈
5
(
8400 + 120z2 + z4

)

3γ
(
20 + z2

)5 , −→ < z < →,

(for details, see Casellla and Berger (2002)). A Maple plot of the above pdf is given
in Fig. 5.3, which is a form of symmetric distribution.
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(v) Computation of the Coverage Interval:
Recently, the computation of the coverage interval for the convolution of two
independent Student’s t random variables has been investigated by Fotowicz (2006),
and Nadarajah (2006a), which is defined as follows.
Let Xm and Yn be two independent Student’s t random variables with pdfs fX (x)

and fY (y), and degrees of freedom m > 0 and n > 0, respectively. Let Z denote the
convolution Z = Xm +Yn . Obviously, Z is a symmetric random variable. Let the pdf
and cdf of Z be denoted by g(·) and G(·) respectively. Then, the coverage interval
of Z = Xm + Yn corresponding to coverage probability p = 1 − σ is defined by

[zlow, zhigh],

where zlow = G−1
(

σ
2

)
and zhigh = G−1

(
1 − σ

2

)
. For details of the methods for

the computation of the coverage interval for the convolution of two independent
Student’s t random variables, see Fotowicz (2006), and Nadarajah (2006a).

5.2 Distribution of the Product of Independent Student’s t
Random Variables

This section discusses the distribution of the product of independent Student’s t
random variables. The distribution of the product independent random variables is
one of the important research topics both from theoretical and applications point
of view. It arises in many applied problems of biology, economics, engineering,
genetics, hydrology, medicine, number theory, order statistics, physics, psychology,
etc, (see, for example, Cigizoglu and Bayazit (2000), Frisch and Sornette (1997),
Galambos and Simonelli (2005), Grubel (1968), Ladekarl et al. (1997), Rathie and
Rohrer (1987), Rokeach and Kliejunas (1972), Springer (1979), and Sornette (1998,
2004), among others). The distributions of the product Z = XY , when X and Y are
independent random variables and belong to the same family, have been studied by
many authors, (see, for example, Sakamoto (1943) for the uniform family, Springer
and Thompson (1970) for the normal family, Stuart (1962) and Podolski (1972) for
the gamma family, Steece (1976), Bhargava and Khatri (1981) and Tang and Gupta
(1984) for the beta family, AbuSalih (1983) for the power function family, andMalik
and Trudel (1986) for the exponential family, among others). The distribution of
the product of two correlated t variates has been considered by Wallgren (1980).
Recently, Nadarajah and Dey (2006) have studied the distribution of the product
Z = XY of two independent Student’s t random variables X and Y. It appears from
the literature that not much study has been done for the distributions of the product
of independent Student’s t random variables and applications, which need further
investigation. Following Nadarajah and Dey (2006), the distributions of the product
of independent Student’s t random variables are summarized below. For details, see
Nadarajah and Dey (2006).
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(i) Distribution of the product of two independent Student’s t random variables:
(a) Let Xm and Yn be two independent Student’s t random variables with pdfs fX (x)

and fY (y), and degrees of freedom m > 0 and n > 0, respectively. Then, as
derived by Nadarajah and Dey (2006), the cdf of the random variable Z = Xm Yn ,
for m odd, is given by

F(z) =
(

4

γ
∈

nB
(

n
2 , 12

)

⎧ →∫

0
tan−1

(
z∈
my

) (
1 + y2

n

)− 1
2− n

2
dy +

(
z

γ
∈

mnB
(

n
2 , 12

)

⎧

×
(m−1)/2⎨

k=1

⎩
B
( 1+n

2 , k
)

B
(
k, 1

2

)
2F1

(
k, 1+n

2 ; k + 1+n
2 ; 1 − z2

mn

)]
,

(5.6)
where B(·) and 2F1(·) denotes the beta and Gauss hypergeometric functions respec-
tively.
(b) Let Xm and Yn be two independent Student’s t random variables with pdfs

fX (x) and fY (y), and degrees of freedom m > 0 and n > 0, respectively. Then,
as derived by Nadarajah and Dey (2006), the cdf of the random variable Z = XmYn ,
for m even, is given by

F(z) =
⎛

⎝ z

γ
∈

mnB
(

n
2 , 1

2

)

⎞

⎠

×
m/2∑

k=1

⎪

B

(
1 + n

2
, k − 1

2

)

B

(

k − 1

2
,
1

2

)

2F1

(

k − 1

2
,
1 + n

2
; k + n

2
; 1 − z2

mn

⎧]

,

(5.7)

where B(·) and 2F1(·) denotes the beta and Gauss hypergeometric functions respec-
tively.
(c) For the cdf of the random variable Z = XmYn for particular cases of the degrees

of freedom m = 2, 3, 4, 5 and n = 1, 2, 3, 4, 5, see Nadarajah and Dey (2006).
(d) The possible shapes of the pdf of Z = |XmYn| for a range of values of degrees

of freedom m > 0 and n > 0 are illustrated in Fig. 5.4a, b. We observe that the
shapes of the pdf of Z = XmYn are unimodal. The effects of the parameters can
easily be seen from these graphs.

(ii) Special Cases:
(a) Let X and Y be two independent Student’s t random variables with 1 degree of
freedom, and pdf fX (x) and pdf fY (y), respectively. Then, the pdf of the random
variable Z = XY is given by

gz(z) = 2 In|z|
γ2(z2 − 1)

− → < z < →,

(for details, see Rider (1965), Springer and Thompson (1966), and Springer (1979)).
A Maple plot of the above pdf is given in Fig. 5.5.
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Fig. 5.4 Plots of the pdf of Z = |XmYn | for (a) m = 2 and n = 1, 3 and (b) m = 4 and
n = 1, 3

Fig. 5.5 Plot of the pdf of
Z = XY , where and are
standard Student’s t random
variables with 1 degree of
freedom

(b) Let X be a Student’s t random variables with pdf fX (x) and degrees of freedom
κ > 0. Then, the pdf of the random variable Z = X2 is given by

gz(z) = α
(

κ+1
2

)

∈
κγα

(
κ
2

)
(
1 + z

2

)−
(
1+κ
2

)

z− 1
2 , z > 0, κ > 0, (5.8)

which defines a F1,κ distribution (see, for example, Lukacs (1972) and Patel and
Read (1982), among others).
(c) Let X be a Student’s t random variables with pdf fX (x) and 1 degree of freedom.
Then, the pdf of the random variable Z = X2 is given by
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gz(z) = 1

γ
(1 + z)−1 z− 1

2 , z > 0

which defines a F1,1 distribution (see, for example, Lukacs (1972), among others).

5.3 Distribution of the Ratio of Independent Student’s t Random
Variables

This section presents the distributions of the ratio of independent Student’s random
variables, which play an important role in many areas of research, for example,
in economics, genetics, meteorology, nuclear physics, statistics, etc. The distribu-
tions of the ratio Z = X/Y , when X and Y are independent random variables and
belong to the same family, have been studied by many researchers, (see, for exam-
ple, Marsaglia (1965) and Korhonen and Narula (1989) for the normal family, Basu
and Lochner (1971) for the Weibull family, Shcolnick (1985) for the stable family,
Hawkins and Han (1986) for the non-central chi-squared family, Provost (1989b) for
the gamma family, andPham-Gia (2000) for the beta family, among others). Recently,
Nadarajah and Dey (2006) have studied the distributions of the ratio Z = X/Y of
two independent Student’s t random variables X and Y. It appears from the litera-
ture that not much attention has been paid to the study of the distributions of the
ratio of independent Student’s t random variables and applications, except Nadara-
jah and Dey (2006), which need further investigation. For the sake of completeness
of this project, following Nadarajah and Dey (2006), the distributions of the ratio
of independent Student’s t random variables are summarized below. For details, see
Nadarajah and Dey (2006).

(i) Distribution of the ratio of two independent Student’s t random variables:
(a) Let Xm and Yn be two independent Student’s t random variables with pdfs fX (x)

and fY (y), and degrees of freedomm > 0 and n > 0 , respectively. Then, as derived
by Nadarajah and Dey (2006), the cdf of the random variable Z = Xm/Yn , for m
odd, is given by

F(z)=
⎛

⎝ 4

γ
∈

nB
(

n
2 , 1

2

)

⎞

⎠
→∫

0

tan−1
(

zy∈
m

)(

1 + y2

n

⎧− 1
2− n

2

dy+
⎛

⎝ 2
∈

nz

γ
∈

m B
(

n
2 , 1

2

)

⎞

⎠

×
(m−1)/2∑

k=1

⎪
mk B(k, 1

2 )

z2knk(2k + n − 1)
2F1

(

k, k + n − 1

2
; k + 1 + n

2
; 1 − m

nz2

)]

,

(5.9)

where B(·) and 2F1(·) denotes the beta and Gauss hypergeometric functions respec-
tively.
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Fig. 5.6 Plots of the pdf of Z =
∣
∣
∣ Xm

Yn

∣
∣
∣ for (a) m = 2 and n = 1, 2 and (b) m = 4, and n = 1, 2

(b) Let Xm and Yn be two independent Student’s t random variables with pdfs fX (x)

and fY (y), and degrees of freedomm > 0 and n > 0, respectively. Then, as derived
by Nadarajah and Dey (2006), the cdf of the random variable Z = Xm/Yn , for m
even, is given by

F(z) =
⎛

⎝ 2
∈

nz

γ
∈

m B
(

n
2 , 1

2

)

⎞

⎠

×
(m/2)∑

k=1






mk− 1
2 B
(

k − 1
2 , 1

2

)

z2k−1nk− 1
2 (2k − 2 + n)

2F1

(

k − 1

2
, k + n

2
− 1; k + n

2
; 1 − m

nz2

)
⎢


 ,

(5.10)

where B(·) and 2F1 (·) denotes the beta and Gauss hypergeometric functions respec-
tively.
(c) For the cdf of the random variable Z = Xm/Yn for particular cases of the

degrees of freedom m = 2, 3, 4, 5 and n = 1, 2, 3, 4, 5 see Nadarajah and Dey
(2006).

(d) The possible shapes of the pdf of Z =
∣
∣
∣ Xm

Yn

∣
∣
∣ for a range of values of degrees of

freedom and are illustrated in Fig. 5.6a, b. We observe that the shapes of Z =
∣
∣
∣ Xm

Yn

∣
∣
∣

are unimodal. The effects of the parameter can easily be seen from these graphs.

(ii) Special Case: Let X and Y be two independent Student’s t random variables with
1 degree of freedom, and pdfs fX (x) and fY (y), respectively. Then, the pdf of the
random variable Z = |X/Y | is given by
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Fig. 5.7 Plot of the pdf of
Z = X/Y , where X and Y are
standard Student’s t random
variables with 1 degree of
freedom

gz(z) = 2 ln|z|
γ2(z2 − 1)

− → < z < →,

which is identical to the pdf of the product random variable Z = |XY | of two
independent Student’s t random variables X and Y as discussed above, (for details,
see Rider (1965), Springer and Thompson (1966), and Springer (1979)). A Maple
plot of the above pdf is given in Fig. 5.7.

Since the Cauchy distribution with median zero (standard ) the pdf of X and 1/X
are identical, the pdfs of product and the ratio of two standard Cauchy distribution
are identical.

5.4 Distributions of the Sums, Differences, Products and Ratios
of Dependent (Correlated) Student t Random Variables

It appears from literature that not much attention has been paid to the distributions
of the sums, differences, products and ratios of dependent (correlated) Student’s t
random variables, and therefore needs further research investigation.
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5.5 Summary

This chapter has reviewed the distributions of the sum X + Y, product XY, and
ratio X/Y, when X and Y are independent random variables and have the Student’s
t distributions. The expressions for the pdfs as proposed by different authors are
presented. Some special cases of the sum, product and ratio distributions are given.
By using Maple programs, various graphs have been plotted.



Chapter 6
Sum, Product and Ratio for the Normal
and Student’s t Random Variables

The distributions of the sum X + Y , product XY , and ratio X/Y , when X and Y
are independent random variables and belong to different families, are of consid-
erable importance and current interest. These have been recently studied by many
researchers, (among them, Nadarajah (2005b, c, d) for the linear combination, prod-
uct and ratio of normal and logistic random variables, Nadarajah and Kotz (2005c)
for the linear combination of exponential and gamma random variables, Nadarajah
and Kotz (2006d) for the linear combination of logistic and Gumbel random vari-
ables, Nadarajah and Kibria (2006) for the linear combination of exponential and
Rayleigh random variables, Nadarajah and Ali (2004) for the distributions of the
product XY when X and Y are independent Laplace and Bessel random variables
respectively, Ali and Nadarajah (2004) for the product and the ratio of t and logistic
random variables, Ali andNadarajah (2005) for the product and ratio of t and Laplace
random variables, Nadarajah and Kotz (2005b) for the ratio of Pearson type VII and
Bessel random variables, Nadarajah (2005c) for the product and ratio of Laplace
and Bessel random variables, Nadarajah and Ali (2005) for the distributions of XY
and X/Y , when X and Y are independent Student’s and Laplace random variables
respectively, Nadarajah and Kotz (2005a) for the product and ratio of Pearson type
VII and Laplace random variables, Nadarajah and Kotz (2006a) for the product and
ratio of gamma and Weibull random variables, Shakil, Kibria and Singh (2006) for
the ratio of Maxwell and Rice random variables, Shakil and Kibria (2007) for the
ratio of Gamma and Rayleigh random variables, Shakil, Kibria and Chang (2007)
for the product and ratio of Maxwell and Rayleigh random variables, and Shakil and
Kibria (2007) for the product of Maxwell and Rice random variables, are notable).
This chapter studies the distributions of the sum X + Y , product XY , and ratio X/Y ,
when X and Y are independent normal and Student’s t random variables respectively.
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6.1 Distribution of the Sum of Normal and Student’s t Random
Variables

This section discusses the distributions of the sum of the independent normal and
Student’s t randomvariables. The distributions of the sumof the normal and Student’s
t random variables were first studied by Kendall (1938) who formulated the pdf of
the random variable Z = X + Y , for 1 degree of freedom. Recently, Nason (2006)
has studied the distributions of the sum X +Y , when X and Y are independent normal
and sphered Student’s t random variables respectively. It appears from the literature
that not much attention has been paid to the distributions of the sum of the normal
and Student’s t random variables. This chapter introduces and develops some new
results on the pdfs for the sum of the normal and Student’s t random variables, which
have been independently derived here.

6.1.1 Kendall’s Pdf for the Sum X + Y

Let X → N(μ, σ 2) be a normal random variable with pdf fX(x). Let Y be a Student’s
t random variable with degrees of freedom π = 1, and pdf fY (y). Let Z = X + Y
Then, the pdf of the random variable Z , when π = 1, as derived by Kendall (1938),
is given by

fz(z) =
∈
2

κ σ
Re

{
ez2erfc(z)

}
, (6.1)

where z = d − ip
2 , d = 1∈

2 σ
, p =

∈
2μ
σ

, erfc (.), denotes complementary error
function, and means ‘take the real part’.

6.1.2 Nason’s Pdfs for the Sum X + Y, Based on Sphered Student’s
t Density

Recently, Nason (2006) has studied the distributions of the sum X + Y , when X and
Y are independent normal and sphered student’s t random variables respectively. The
pdf of a sphered student’s t random variable is defined as.

Definition (Sphered Student’s t density):The sphered Student’s t-density on π ∀ 3
degrees of freedom is defined by tπ : ∞ ≤ (0,∃) such that

tπ(x) = α
(

π
2 + 1

2

)

∈
κ(π − 2)α

(
π
2

)
[

1 + x2

π − 2

]−(π+1)
2

, −∃ < x < ∃, π > 0 (6.2)
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Fig. 6.1 Plot of the pdf of
sphered student’s t for degrees
of freedom v = 3

Note that the sphered Student’s t density is the standard Student’s t distribution
rescaled to have unit variance. For a multivariate version of the sphered Student’s t
distribution, see, for example, Krzanowski and Marriott (1994), and Nason (2001),
among others. The possible shape of the above sphered Student’s t density for degrees
of freedom π = 3 is illustrated in Fig. 6.1, which is reproduced from Nason (2006).
Nason (2006) has studied the distributions of the sum of normal and sphered

student’s t random variables. Let X → N(μ, σ2) be a normal random variable with
pdf γμ, σ (x) . Let Tπ be a random variable distributed according to sphered Student’s
t-distribution on degrees of freedom, with pdf hπ(t). Let Y = X + Tπ . Then, the
pdf of the random variable Y can be represented as the convolution of the density
functions of X and Tπ , as follows:

fY (y) =
+∃∫

−∃
γμ,σ (y − t)hπ(t)dt =

+∃∫

−∃
γμ+y,σ (t)hπ(t)dt = 〈

γμ+y, σ , hπ

〉
, (6.3)

where ≥,≡ is the usual inner product ≥f , g≡ =
+∃∫
−∃

f (u)g(u)du. Then,Nason has derived

some nice results for the inner products of hπ(t) with γμ,σ (x) for both cases when
π = 3 and π > 3. For details of these results, see Nason (2006).
As pointed out by Nason (2006), some of the applications and importance of these

results are in Bayesian wavelet shrinkage, Bayesian posterior density derivations,
calculations in the theoretical analysis of projection indices, and computation of
certain moments.
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6.1.3 Some New Results on the Pdfs for the Sum X + Y

In what follows, we introduce and develop some new results on the pdfs for the
sum of the normal and Student’s t random variables. Let X → N

(
0, σ 2

)
be a normal

random variable with pdf fX(x). Let Y be a Student’s t random variable with π degrees
of freedom, and pdf fY (y). Let Z = X + Y . Then, the pdf of the random variable Z
is given by

fz(z) =
+∃∫

−∃
fX(z − t)fY (t)dt

= 1∈
2κπ σB

(
π
2 , 1

2

)

∃∫

−∃
e− (z−t)2

2 σ2

(

1 + t2

π

)−(1+π)
2

dt

= 2 e− z2

2 σ2∈
2κπ σB

(
π
2 , 1

2

)

∃∫

0

e− t2

2 σ2 cosh

(
zt

σ 2

) (

1 + t2

π

)−(1+π)
2

dt

= 2 π
π
2 e− z2

2 σ2∈
2κπ σB

(
π
2 , 1

2

)
∃∑

n=0

1

n!
(

z2

2 σ 4

)n ∃∫

0

t2 ne− t2

2 σ2
(

t2 + π
)−(1+π)

2
dt (6.4)

Substituting t2 = u in the above integral, and using the Eq. (2.3.6.9), We obtain,

∃∫

0

wφ−1e−pw (w + ς)−β dw = α(φ)ςφ−βψ(φ, φ + 1 − β; p ς)

from Prudnikov et al. (1986, volume 1), the above expression for the pdf reduces to:

fz(z) = π
π
2 e

− z2

2σ2

∈
2κ σB

(
π
2 , 1

2

)
∃∑

n=0

1

n!

(
z2

2 σ 4

)n

α

(

n + 1

2

)

πn− π
2 ψ

(

n + 1

2
, n + 1 − π

2
; π

2σ 2

)

,

where |z| < ∃, π > 0, σ > 0 andψ(.) denotes Kummer’s hypergeometric function.
In view of the fact that |z| < ∃, ignoring all the terms after the first term in the above
series, an approximate pdf of the random variable Z = X + Y is easily obtained as

fz(z) = 1∈
2 σB

(
π
2 , 1

2

)ψ

(
1

2
, 1 − π

2
; π

2 σ 2

)

e− z2

2 σ2 (6.5)

Substituting π = 1, and using the Eq. (13.6.39) fromAbramowitz and Stegun (1972),
the above expression for the pdf easily reduces to:

http://dx.doi.org/10.2991/978-94-6239-061-4_2
http://dx.doi.org/10.2991/978-94-6239-061-4_2_13
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Fig. 6.2 Plots of the pdf of
Z = X + Y

Fig. 6.3 Plots of the pdf of
Z = X + Y

fz(z) = 1∈
2κ σ

e
1

2 σ2 erfc

(
1∈
2 σ

)

e− z2

2σ2 ,

where erfc (.) denotes complementary error function. Using Maple, the possible
shapes of the above approximate pdf of Z = X + Y for a range of values of σ > 0
and degrees of freedom π > 0 are illustrated in Figs. 6.2, 6.3, and 6.4.
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Fig. 6.4 Plots of the pdf of
Z = X + Y

6.2 Distribution of the Product of Normal and Student’s t
Random Variables

The distributions of the product of independent normal and Student’s t random
variables arise in many areas of engineering, medicine, science, and statistics. These
distributions play an important role in many areas of statistics, for example, Bayesian
analysis, projection pursuit, and wavelet shrinkage, to mention a few. In case of
Bayesian wavelet shrinkage, it has been shown by Johnstone and Silverman (2004,
2005) that excellent performance is obtained by using heavy-tailed distributions as
part of a wavelet coefficient mixture prior instead of the standard normal. A quantity
of interest is the product of the heavy-tailed distribution with the standard normal. It
is possible that Student’s t distribution might also be an interesting distribution to use
in this context. This section presents the distributions of the product of independent
normal and Student’s t random variables, independently derived by the author. These
results are believed to be new.

6.2.1 Derivation of the Pdf for the Product of Normal
and Student’s t Random Variables

Let X → N
(
0, σ 2

)
be a normal random variable with pdf fX(x). Let Y be a Student’s

t random variable with π degrees of freedom, and pdf fY (y). Let Z = XY . Then, the
pdf of the random variable Z is given by
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Fig. 6.5 Plots of the pdf of
Z = |XY |

fz(z) =
√

2

κπ

1

B
(

π
2 , 1

2

)
∫ ∃

0

1

y
e− z2y2

2σ2

(

1 + y2

π

)− π+1
2

dy (6.6)

Substituting 1
y2

= t, and using following result

∃∫

0

wφ−1e−pw (w + ς)−β dw = α(φ)ςφ−βψ(φ, φ + 1 − β; p ς),

in the Eq. (6.6), (see the Eq. (2.3.6.9), p. 324, Prudnikov et al. (1986, volume 1)), the
pdf of the random variable Z = XY reduces to

fz(z) =
√

1

2π

α
(

π
2 , 1

2

)

B
(

π
2 , 1

2

)ψ

(
π

2
+ 1

2
, 1,

z2

2σ 2π

)

, -∃ < z < ∃, π > 0.σ > 0.

(6.7)
where ψ(.) denotes Kummer’s hypergeometric function. Substituting π = 1, σ = 1,
and using the Eq. (13.6.39), p. 510, from Abramowitz and Stegun (1972), the above
expression for the pdf easily reduces to:

fz(z) = 1∈
2κ

e− z2
2 erfc

(
z∈
2

)

, (6.8)

where erfc (.) denotes complementary error function. Using Maple, the possible
shapes of the pdf of the random variable Z = |XY | for a range of values σ > 0 of
and degrees of freedom π > 0 are illustrated in Fig. 6.5.

http://dx.doi.org/10.2991/978-94-6239-061-4_2
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6.3 Distribution of the Ratio of Normal and Student’s t
Random Variables

The distributions of the ratio of independent normal and Student’s t random variables
are of interest in many areas of engineering, medicine science, and statistics. For
example, in the analysis of Bayesian wavelet shrinkage, Johnstone and Silverman
(2004, 2005) show that excellent performance is obtained by using heavy-tailed
distributions as part of a wavelet coefficient mixture prior instead of the standard
normal. A quantity of interest is the ratio of the heavy-tailed distribution with the
standard normal. It is possible that Student’s t distributionmight also be an interesting
distribution to use in this context. This section presents the distributions of the ratio
of independent normal and Student’s t random variables, independently derived by
the author. These results are believed to be new.

6.3.1 Derivation of the Pdf for the Ratio of Normal and Student’s t
Random Variables

Let X → N
(
0, σ 2

)
be a normal random variable with pdf fX(x). Let Y be a Student’s

t random variable with π degrees of freedom, and pdf fY (y). Let Z = X/Y . Then, the
pdf of the random variable Z is given by

fz(z) =
∃∫

−∃
|y|fX(zy)fY (y)dy

=
∈
2

∈
κπσ B

(
π

2 , 1
2

)

∃∫

0

ye− z2y2

2σ2

(

1 + y2

π

)− 1+π
2

dy (6.9)

Substituting y2 = t, and using following result

∃∫

0

wφ−1e−pw (w + ς)−β dw = α(φ)ςφ−βψ(φ, φ + 1 − β; p ς),

in the Eq. (6.9), (see the Eq. (2.3.6.9), p. 324, Prudnikov et al. (1986, volume 1)), the
pdf of the random variable Z = X/Y reduces to

fz(z) =
∈

π∈
2κσ B

(
π
2 , 1

2

)ψ

(

1,
3 − π

2
; π z2

2σ 2

)

,−∃ < z < ∃, π > 0, σ > 0.

(6.10)

http://dx.doi.org/10.2991/978-94-6239-061-4_2


6.3 Distribution of the Ratio of Normal and Student’s t Random Variables 101

Fig. 6.6 Plots of the Pdf of
Z = |X/Y |

whereψ (.) denotes Kummer’s hypergeometric function. Substituting π = 1, σ = 1,
and using the Eq. (13.6.39), p. 510, from Abramowitz and Stegun (1972), the above
expression for the pdf easily reduces to:

fz(z) = 1∈
2κ

e− z2
2 erfc

(
z∈
2

)

,

where erfc (.) denotes complementary function. Note that, for π = 1, σ = 1, the
expressions for the pdfs of Z = XY and Z = X/Y are identical. Using Maple 10, the
possible shapes of the pdf of the random variable Z = X/Y for a range of values of
σ > 0 and degrees of freedom π > 0 are illustrated in Fig. 6.6.

6.4 Summary

This chapter has studied the distributions of the sumX+Y , productXY , and ratioX/Y ,
when X and Y are independent normal and Student’s t random variables respectively.
The distributions of the sum, product, and ratio of the independent normal and Stu-
dent’s t random variables as proposed by different researchers have been reviewed.
Some new results have been included. To describe the possible shapes of these pdfs,
several graphs have been plotted using Maple programs.

http://dx.doi.org/10.2991/978-94-6239-061-4_2_13


Chapter 7
Product of the Normal and Student’s
t Densities

7.1 Introduction

The distributions of the product of two random variables have a great importance in
many areas of research both from the theoretical and applications point of view.
Srivastava and Nadarajah (2006) have studied some families of Bessel distribu-
tions and their applications by taking products of a Bessel function pdf of the first
kind and a Bessel function pdf of the second kind. It appears from the literature
that not much attention has been paid to this kind of study. The normal and Stu-
dent’s t distributions arise in many fields and have been extensively studied by many
researchers in different times. This chapter introduces and develops a new symmetric
type distribution with its probability density function (pdf) taken to be of the form
px(x) = C. fx(x).gx(x), where C is the normalizing constant, and fx(x) and gx(x)

denote the pdfs of normal and Student’s distributions, respectively. More on this
topic the readers are referred to Frisch and Sornette (1997), Sornette (1998, 2004),
Galambos and Simonelli (2005), Shakil and Kibria (2007), and recently Shakil and
Kibria (2009), among others.

7.1.1 Some Useful Lemmas

The following Lemmas will be used to complete the derivations.

Lemma 7.1.1 (Prudnikov et al. 1986, volume 1, Equation 2.3.6.9, page 324).
For |arg z| < σ, π > 0, z > 0,Re (κ) > 0, and p > 0,

→∫

0

xκ−1

(x + z)π
e−px dx = α(κ) zκ−π γ (κ, κ + 1 − π; pz)

M. Ahsanullah et al., Normal and Student’s t Distributions and Their Applications, 103
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where γ(·) denotes Kummer’s function.

Proof: The proof of Lemma 7.1.1 easily follows by replacing z by z. p, and substi-
tuting φ = κ + 1 − π and t = x

z in the Eq. (1.1) of Chap.1.

Lemma 7.1.2 (Prudnikov et al. 1986, volume 1, equation 2.3.8.1, page 328).

For |arg
(
1 + a

z

)
| < σ, a > 0, π > 0, z > 0,Re(κ) > 0,Re(ς) > 0, and p > 0,

a∫

0

xκ−1 (a − x)ς−1

(x + z)π
e−px dx = B (κ, ς) z−πaκ+ς−1β1

(

κ, π;κ + ς; −a

z
, ap

)

,

where B(·) and β1(·) denote the beta and generalized hypergeometric functions
respectively.

Proof: The proof of Lemma 7.1.2 easily follows by using the substitution x = a · u,
and applying the Eq. (1.2) of Chap.1 and the definition of beta function.

7.2 Product of the Densities of Normal and Student’s t Random
Variables

This section develops a new symmetric Student’s t-type distributionwith its pdf taken
to be the product of the densities of normal and Student’s t random variables.

7.2.1 Expressions for the Normalizing Constant and PDF

Consider the product function px(x) = C · fx(x) · gx(x),−→ < x < →, C > 0,
where C denotes a normalizing constant, and fx(x) and gx(x) denote the pdf of
the standard normal and Student’s t distributions respectively. The pdf fx(x) of
X ∈ N (0, 1) is given by

fx(x) = 1∀
2σ

e−x2/2,−→ < x < →, (7.1)

whereas the pdf gX (x) of a Student’s t distribution with v degrees of freedom (for
some integer v > 0), in terms of beta function, is, given by

gx(x) = 1∀
vB
( v
2 ,

1
2

)

(

1 + x2

v

)−(1+v)/2

,−→ < x < →, v > 0 (7.2)

http://dx.doi.org/10.2991/978-94-6239-061-4_1
http://dx.doi.org/10.2991/978-94-6239-061-4_1
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Theorem 7.2.1 The product function px(x) = C. fx(x).gx(x),−→ < x < →, C >

0, defines a pdf if the normalizing constant is given by

C =
∀
2B
( v
2 ,

1
2

)

γ
( 1
2 , 1 − v

2 ; v
2

) , v > 0, (7.3)

where B(·) and γ(·) denote beta and Kummer’s functions respectively.

Proof: Clearly, px(x) ∞ 0,≤x ∃ (−→,+→) and C > 0. Hence for px(x) to be a
pdf, we must have

∫ +→
−→ px(x)dx = 1, where px(x) = C. fx(x).gx(x). Clearly, in

view of the even properties of the pdfs of normal and Student’s t distributions, we
have px(−x) = px(x) that is, px(x) is an even function. Thus, we have

+→∫

−→
px(x)dx = 2

→∫

0

px(x)dx = 2

→∫

0

C. fx(x).gx(x)dx = 1,

which, on substituting the expressions (7.1) and (7.2) for the pdfs of standard normal
and Student’s t distributions respectively, gives

2

→∫

0

C.
1∀
2σ

e−x2/2.
1∀

vB
( v
2 ,

1
2

)

(

1 + x2

v

)−(1+v)/2

dx = 1,

that is,
→∫

0

e−x2/2.

(

1 + x2

v

)−(1+v)/2

dx =
∀
2σvB

( v
2 ,

1
2

)

2C
. (7.4)

Now, by substituting x2
2 = t and using Lemma 7.1.1 in the above integral (7.4), the

proof of Theorem 7.2.1 easily follows.

Theorem 7.2.2 If fx(x) and gx(x) are the pdfs of standard normal and Student’s t
distributions, as defined in (7.1) and (7.2), respectively, for some continuous random
variable X , and C denotes the normalizing constant given by (7.3), the product
function given by

px(x) = C. fx(x) · gx(x)

=
e−x2/2.

(
1 + x2

v

)−(1+v)
2

(
∀

σv)γ
( 1
2 , 1 − v

2 ; v
2

) , −→ < x < →, v > 0, (7.5)

defines a pdf of the random variable X , where γ(·) denotes Kummer’s function. It
appears that px(x) is symmetric and t-type distribution with v degrees of freedom.
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Proof: The proof easily follows from Theorem 7.2.1.
Special Case: For v = 1, the pdf in (7.5) reduces to the product of densities of
normal and Cauchy, with the normalizing constant given by

C = (
∀
2)σ

γ
( 1
2 ,

1
2 ; 1

2

) .

7.2.2 Derivation of the CDF

This section derives the associated cdf of the random variable X , when the normal-
izing constant C(> 0) satisfies the requirements for the product function px(x) to
be a density function, as shown in Sect. 7.2.1.

Theorem 7.2.3 Let fx(x) and gx(x) be the pdfs of standard normal and Student’s
t distributions defined by (7.1) and (7.2).Then, the cdf of the random variable X is
given by

Fx(x) = 1

2
+ 1∀

σv γ
( 1
2 , 1 − v

2 ; v
2

)

[

x β1

(
1

2
,
1

2
+ v

2
; 3
2
; −x2

v
,

x2

2

)]

, (7.6)

where |arg
(
1 + x2

v

)
| < σ, v > 0, and γ(·) and β1(·) denote Kummer’s and gen-

eralized hypergeometric functions respectively.

Proof: Using the expression for the pdf (7.5) as derived in Theorem 7.2.2 above, we
have

FX (x) = Pr (X ≥ x)

= 1∀
σvγ

(
1/2, 1 − v

2 ; v
2

)

x∫

−→

{(

1 + t2

v

)−(1+v)/2

e−t2/2

⎧

dt

= 1 − 1∀
σvγ

(
1/2, 1 − v

2 ; v
2

)

⎨

⎩
→∫

0

{(

1 + t2

v

)−(1+v)/2

e−t2/2

⎧

dt

−
x∫

0

{(

1 + t2

v

)−(1+v)/2

e−t2/2

⎧

dt



⎛ (7.7)

Now, by substituting t2
2 = u and using Lemma 7.1.2 in the above integral (7.7), the

proof of Theorem 7.2.3 easily follows.
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7.3 Some Properties of the Symmetric Distribution

This section discusses some characteristics of the proposed new symmetric distrib-
ution.

7.3.1 Mode

Mode is the value of x for which the product probability density function px(x)

defined by (7.5) is maximum. Now, differentiating equation (2.5), we have

p≡
x(x) = −

xe−x2/2
(
1 + x2

v

)−(1+v)/2

∀
σvγ

(
1/2, 1 − v

2 ; v
2

)

⎝

1 +
(
1 + v

v

)(

1 + x2

v

)−1
⎞

,

which, when equated to 0, gives the mode to be x = 0. It can be easily seen that
p≡≡(x) < 0. Thus, the maximum value of the product probability density function
px(x) is easily obtained from (7.5) as px(0) = 1∀

σvγ(1/2,1− v
2 ; v

2 )
. Clearly, the product

probability density function (7.5) is unimodal.

7.3.2 Moments

Theorem 7.3.4 For some degrees of freedom v > 0 and some integer k > 0, kth
moment of a random variable x having the pdf (7.5) is given by

E
(

Xk
)

=

⎠
⎪



α
(

k+1
2

)
v

k
2 γ

(
k+1
2 , k−v

2 , +1; v
2

)

∀
σ γ

(
1
2 , 1− v

2 ; v
2

) , when k is even;
0, when k is odd;

(7.8)

where k > 0 is integer, and γ(·) denotes Kummer’s function.

Proof: Using the expression for the pdf (7.5), we have

E
(

Xk
)

= 1∀
σ v γ

( 1
2 , 1 − v

2 ; v
2

)

+→∫

−→

⎠
⎪


xk
(

1 + x2

v

)− (1+v)
2

e
−x2
2





dx (7.9)

Case I: When k is even.
Let k = 2n, where n > 0 is an integer. Then, since, clearly, the integrand in (7.9) is
an even function, we have

http://dx.doi.org/10.2991/978-94-6239-061-4_2
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E
(

Xk
)

= 2v
v
2∀

σ γ
( 1
2 , 1 − v

2 ; v
2

)

+→∫

0

{

x2n
(

x2 + v
)− (1+v)

2
e

−x2
2

⎧

dx (7.10)

Now, by substituting x2
2 = u and using Lemma 7.1.1 in the above integral (7.10),

the proof of Theorem 7.3.4 (when k is an even integer) easily follows.

Case II: When k is odd.
Let k = 2n − 1, where n > 0 is an integer. Then, since, clearly, the integrand in
(7.10) is an odd function, the proof of Theorem 7.3.4 (when k is an odd integer)
easily follows.

Special Cases: By taking k = 2 and k = 4 respectively in (7.10), for some degrees
of freedom v > 0, the second and fourth moments are easily obtained as follows

E
(

X2
)

= 1

2

vγ
( 3
2 , 2 − v

2 ; v
2

)

γ
( 1
2 , 1 − v

2 ; v
2

) , (7.11)

and

E
(

X4
)

= 3

4

v2γ
(
5
2 , 3 − v

2 ; v
2

)

γ
( 1
2 , 1 − v

2 ; v
2

) , (7.12)

where γ(·) denotes Kummer’s function.

7.3.3 Mean, Variance, and Coefficients of Skewness,
and Kurtosis

From (7.12), the mean, variance, and coefficients of skewness and kurtosis of prob-
ability density function (7.5) are easily obtained as follows:

(i) Mean: μ = E(x) = 0;

(ii) Variance: V ar (X) = σ 2 = vγ
(
3
2 ,2− v

2 ; v
2

)

2γ
(
1
2 ,1− v

2 ; v
2

) , v > 0

(iii) Coefficient of Skewness: φ1 = ς3

ς
3/2
2

= 0

(iv) Coefficient of Kurtosis: φ2 = ς4

ς2
2

= 3γ
(
5
2 ,3− v

2 ; v
2

)
γ
(
1
2 ,1− v

2 ; v
2

)

[
γ
(
3
2 ,2− v

2 ; v
2

)⎢2 , v > 0



7.4 Entropy 109

7.4 Entropy

The Shannon (1948) entropy of an absolutely continuous random variable x having
the probability density function θx(x) is defined as

H [X ] = E[−ln (θx(x)] = −
∫

s

θx(x) ln [θx(x)]dx (7.13)

where S = {x : θx(x) > 0}.
Theorem 7.4.1 For v > 0, the entropy of a random variable x having the probability
density function px (x) in (7.5) , is given by

H [X ] = ln

{∀
σvγ

(
1

2
, 1 − v

2
; v

2

)}

+ 1

4

vγ
( 3
2 , 2 − v

2 ; v
2

)

γ
( 1
2 , 1 − v

2 ; v
2

)

+
[
(1 + v)

2
∀

σ

] →∑

j=1

(−1) j−1α
(

j + 1
2

)

j

γ
(

j + 1
2 , j − v

2 + 1; v
2

)

γ
( 1
2 , 1 − v

2 ; v
2

) ,

where γ(·) denotes Kummer’s function.

Proof: From (7.13), we have

H [X ] = E [−ln (px (x))] = −
+→∫

−→
px (x) ln [px (x)] dx

= −
+→∫

−→

(
1 + x2

v

)− (1+v)
2

e
−x2
2

∀
σ v γ

( 1
2 , 1 − v

2 ; v
2

)x ln

⎠
⎪



(
1 + x2

v

)− (1+v)
2

e
−x2
2

∀
σ v γ

( 1
2 , 1 − v

2 ; v
2

)





dx (7.14)

In view of the definitions of the pdf (7.5) (Theorem 7.2.2) and moments, the above
expression (7.14) of entropy easily reduces as

H [X ] = ln

{∀
σv γ

(
1

2
, 1 − v

2
; v

2

)}

+ 1

2
E
(

X2
)

+
(
1 + v

2

)

E

[

ln

(

1 + X2

v

)]

= ln

{∀
σv γ

(
1

2
, 1 − v

2
; v

2

)}

+ 1

2
E
(

X2
)
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Table 7.1 Percentiles of the new symmetric distribution

v 50% 60% 70% 75% 80% 85% 90% 95% 99%

3 √ 0 0.1750 0.3640 0.4692 0.5881 0.7287 0.9095 1.1865 1.7385
4 √ 0 0.1761 0.3656 0.4714 0.5902 0.7304 0.9098 1.1831 1.7230
5 √ 0 0.1767 0.3667 0.4727 0.5914 0.7313 0.9097 1.1804 1.7118
10 √ 0 0.1780 0.3689 0.4750 0.5940 0.7325 0.9090 1.1734 1.6840
15 √ 0 0.1784 0.3696 0.4757 0.5942 0.7327 0.9081 1.1704 1.6721
20 √ 0 0.1786 0.3699 0.4760 0.5944 0.7328 0.9077 1.1687 1.6659
25 √ 0 0.1787 0.3701 0.4762 0.5946 0.7329 0.9074 1.1677 1.6620
30 √ 0 0.1789 0.3702 0.4763 0.5947 0.7329 0.9073 1.1670 1.6593
35 √ 0 0.1788 0.3703 0.4764 0.5947 0.7329 0.9071 1.1664 1.6573
40 √ 0 0.1788 0.3703 0.4765 0.5948 0.7329 0.9070 1.1660 1.6560
50 √ 0 0.1789 0.3704 0.4766 0.5949 0.7329 0.9069 1.1655 1.6537
60 √ 0 0.1790 0.3705 0.4767 0.5914 0.7329 0.9068 1.1651 1.6524
70 √ 0 0.1792 0.3708 0.4770 0.5953 0.7333 0.9073 1.1660 1.6560
75 √ 0 0.1790 0.3706 0.4767 0.5950 0.7329 0.9067 1.1648 1.6513

+
(
1 + v

2

) →∑

j=1

(−1) j−1

jv j
E
(

X2 j
)

(7.15)

By using the moment expressions (7.10) and (7.11) in (7.15), the proof of Theorem
7.4.1 easily follows.

7.5 Percentage Points

This section computes the percentage points of the new symmetric distribution. For
any κ, where 0 < κ < 1, the (100κ)th percentile or the quantile of order κ of the
new symmetric distribution with the pdf px(x) is a number tκ such that the area under
px(x) to the left of tκ is κ. That is, tκ is any root of the equation

F
(
tρ
) =

ta∫

−→
pX (u) du = κ .

Using Maple, the percentiles tκ of the new symmetric distribution are computed for
some selected values of κ for the given values of degrees of freedom v, which are
provided in Table7.1.
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7.6 Summary

This chapter has derived a new symmetric type distribution and its properties, with its
probability density function (pdf) taken to be the product of a normal pdf fx(x)and
a Student’s t distribution pdf gx(x) for some continuous random variable X . The
expressions for the associated pdf, cdf, kth moment, mean, variance, skewness, kur-
tosis, and entropy have been derived in terms of Kummer’s functions. It is shown
that the pdf of the proposed distribution is unimodal. It is noted that for v = 1, we
obtain a new symmetric distribution which is the product of the standard normal and
Cauchy distributions, and for large v wewill obtain a distribution which is product of
two standard normal densities. The percentage points have also been provided. We
hope the findings of this chapter paper will be useful for the practitioners in various
fields of sciences.



Chapter 8
Characterizations of Normal Distribution

8.1 Introduction

Before a particular probability distribution model is applied to fit the real world
data, it is necessary to confirm whether the given probability distribution satisfies the
underlying requirements by its characterization. Thus, characterization of a proba-
bility distribution plays an important role in probability and statistics. A probability
distribution can be characterized through various methods. In recent years, many
authors have studied characterizations of various distributions. This chapter discusses
characterizations of normal distribution.

8.2 Characterizations of Normal Distribution

In this section, we will consider several characterizations of normal distribution. Let
Z be a standard normal distribution (N(0, 1)) with pdf f(z), then

f (z) = 1→
2σ

e
−
(
1
2

)
z2

,−∈ < z < ∈ (8.1)

Suppose the random variable X has a normal distribution with mean μ and standard
deviation π(N(μ, π )) with the pdf f(x) as

f (x) = 1→
2σπ

e
− 1

2

(
x−μ
π

)2

(8.2)

− ∈ < x < ∈,−∈ < μ < ∈, π > 0.

The characteristic functions κ(t) and κ1(t) of Z and X are respectively

M. Ahsanullah et al., Normal and Student’s t Distributions and Their Applications, 113
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114 8 Characterizations of Normal Distribution

κ(t) = e− 1
2 t2 . (8.3)

and
κ1(t) = eiμt− 1

2 π 2t2 , i = →−1 for all t. (8.4)

Here we present some basic properties of the characteristic function κ(t) which we
need for our characterization theorems.

1. κ(t) always exists.
2. κ(t) is uniformly continuous on entire space.
3. κ(t) is non vanishing in a region around zero, κ(0) = 1.
4. κ(t) is bounded. |κ(t)|<1.
5. κ(t) is Hermitian, κ(−t) = κ(t), where κ(t) is the complex conjugate of κ(t).
6. κ(t) for a symmetric (around zero) random variable is real and even function.
7. There is a one to one correspondence between κ(t) and the cdf

Polya (1923) gave the following characterization theorem.

Theorem 8.2.1. Suppose X1 and X2 are independent and identically distributed
random variables. Then X1 and

(X1+X2)→
2

are identically distributed if and only if X1

and X2 are normally distributed.

Proof. It is easy to show that E(X1) = E(X2) = 0. Let κ(t) and κ1(t) be the
characteristic functions of X1 and

(X1+X2)→
2

respectively.

If X1 and X2 are N(0, π 2), then

κ1(t) = [κ(t/
√
2)]2 =

(
e−(1/2)π 2(t/

→
2)2
)

= e−(1/2)π 2t2 (8.5)

Thus (X1+X2)→
2

is distributed as N(0, π 2).

Suppose X1 and
(X1+X2)→

2
are identically distributed.

Then
κ1(t) = [κ(t/

√
2)]2

i.e.
κ1(

→
2t) = [κ(t)]2 for all t.

Therefore recurrently

κ1

(
t2

k
2

)
= (κ (t))2

k
for all t. (8.6)

Let us take a t0 such that κ(t0) ∀= 0, such a t0 can be found since κ(t) is continuous
and κ(0) = 1. Let π 2 > 0 be such that κ(t0) = e−π 2

, then we have

κ1(t02
− k

2 ) = e−π 22−k
for k = 0, 1, 2, . . . . . . (8.7)
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Thus κ1(t) = e−t2π 2
for all t and the theorem is proved.

The following theorem is due to Cramer (1936).

Theorem 8.2.2. Let X1 and X2 be two independent but not necessarily identically
distributed random variables and Z = X1 + X2. If Z is normally distributed, then
X1 and X2 are normally distributed.

To prove the theorem, we need the following two Lemmas.

Lemma 8.2.1. Hadamard’s factorial Theorem.
If g(t) is a integral function of finite order ρ which has zeros β1, β2, . . .and does not
vanish at the origin, then g(t) can be written as

g(t) = m(t)en(t),

where m(t) is the canonical product formed with the zeros of β1, β2, . . . and n(t) is a
polynomial of degree not exceeding ρ.

Lemma 8.2.2. If en(t), where n(t) is a polynomial, is a characteristic function, then
the degree of n(t) cannot exceed 2.

Proof of Theorem 8.2.2. The necessary condition is easy to prove. We will prove
here the sufficiency. We will prove the Theorem under the assumption that Z has
mean zero and standard deviation = π . The characteristic function κ(t) of Z can be
written as κ(t) = κ1(t)κ2(t), where κ1(t) and κ2(t) are the characteristic functions
of X1 and X2 respectively. Now κ1(t) = e− 1

2 π 2t2 is an entire function without zero.
Thus κ1(t) = ep(t), where p(t) is a polynomial of degree not exceeding 2. Hence we
can write

κ1(t) = e−a0 + a1t + a2t2 for some real a0, a1 and a2.

For any characteristic function κ(t), |κ(t)} ∞ 1, hence a2 must be negative. Assum-
ing mean of X1− = μ and standard deviation X1 = π . We obtain

κ1(t) = eiμt − ( 12 )π 2t2 for all t.

Thus X1 is normally distributed. Similarly it can be proved that X2 is also normally
distributed.

Remark 8.2.1. If Z is normally distributed, then we can write Z = X1+X2+· · ·+
Xn, where X ≤

i s, i = 1, 2, . . ., n are independent and normally distributed.

Remark 8.2.2. If X1,X2, . . . ,Xn are n independent and identically distributed ran-
dom variable with mean zero and variance 1, then by central limit theorem

Sn = X1→
n

+ X2→
n

+ · · · + Xn→
n

∃ N (0, 1).
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But by Cramer’s theorem if Sn is N(0, 1), then each Xi→
n
, i = 1, 2, . . . n must be

normal.
Gani and Shanbag (1975) proved that if Z = X1 + X2 is a sum of two independent
random variables is normal, then Z can be decomposed as such that the conditional
distribution of one given the other is normal.
Basu and Ahsanullah (1983) gave a generalization of Cramer’s decomposition the-

orem in the case of sum of dependent random variables based on Gani and Shanbag’s
decomposition in the following theorem.

Theorem 8.2.3. Let Z be a normal random variable with zero mean and variance
π 2 which has Gani and Shanbag decomposition as sum of two random variables
(X1 + X2) with additional property that X1 and X2 are identically distributed with
finite strictly positive second moment and correlation coefficient α, 0 <| α |< 1
Then X1 and X2 both follow the normal distribution.

Proof. See Basu and Ahsanullah (1983).

The following characterization theorem is due to Darmois (1951) and Basu (1951).

Theorem 8.2.4. Suppose X1, X2, . . . , Xn be a set of independent but need not be
identically distributed random variables and let

L1 = a1X1 + a2X2 + · · · + an Xn (8.8)

and
L2 = b1X1 + b2X2 + · · · + bn Xn (8.9)

where a’s and b’s are constant. If L1 and L2 are independently distributed, then Xi

for which ai bi ∀= 0 is normally distributed.
For an interesting proof of the theorem see Linnik (1964 p. 97).
Kagan et al. (1965) showed that if n(≥ 3) independent and identically distributed

random variable with E(Xi ) = 0 and E(X̄ | X1 − X̄ , X2 − X̄ , . . . , Xn − X̄n) = 0,
where n X̄ = ∑n

i=1 Xi , thenX ≤
i s(i = 1, 2, . . . , n) are normally distributed.

Rao (1967) proved that for n(n ≥ 3) i.i.d.rv’s X1, . . . , Xn if E(Xi ) = 0 and
E(X2

i ) < ∈, i = 1, 2, . . . , n. Then if E(X̄ | Xi − X̄) = 0 for a fixed i, then X’s
are normal.
The following example shows that the result need not be true for n = 2.
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Example 8.2.1. Let the random variable X1 and X2 have the following joint pdf,

f (x1, x2) = 1

4
,−1 ∞ x1, x2 ∞ 1, (8.10)

= 0, otherwise.

Let Y1 = X1 + X2 and Y2 = X1 − X2, the conditional pdf of Y1 | Y2 = Y2 is given
by

f (y1 | Y2 = y2) = 1

2(2 − y2)
, 0 < y2 < 2, −2 < y1 < 2 − y2

Hence the result.
Kagan and Zinger (1971) proved the normality of the X’s under the following

conditions.

E(| Xi |2) < ∈, i = 1, 2, . . . , n

E(Lk−1
1 | L2) = 0, k = 1, 2, . . . , n

where L1 = a1X1 + a2X2 + · · · + an Xn and L2 = b1X1 + b2X2 + · · · + bn Xn .

Theorem 8.2.5. SupposeX1 andX2 independent and identically distributed random
variables with mean zero and variance 1. If X1 + X2 and X1 − X2 are independent,
then the common distribution of X1 and X2 is normal.

Proof. Let κ(t) be the common characteristic function of X1 and X2. Since X1+X2
and X1 − X2 are independent, we must have

κ(2t) = (κ(t))3 κ(−t).

The function κ(t) never vanishes. Writing α(t) = κ(t)
κ(−t) , we have α(2t) = (α(t))2.

By induction, we obtain

α(t) =
(

α(
t

2k
)

)k

−
(

1 + o(
t

2k
)

)2k

∃ 1.

Thus α(t) − 1 and κ(t) = κ(−t) for all t.

We have κ(t) = [κ(t/2k)]2k = e−(1/2)t2

The theorem is proved.
The following lemma is due to Roberts (1971).

Lemma 8.2.3. If is a characteristic function of the random variable Z. Suppose Z2

is distributed as chi-square with one degree of freedom, then

κ(t) + κ(−t) = 2e−( 12 )t2 (8.11)
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Proof. Let g(.) be the probability density function of Z2 and h(.) be the pdf of Z.
Then

g(u) = u−( 12 )

→
2σ

e−( 12 )u = 1

2
→

u
h(u) + 1

2
→

u
h(−u).

Thus

h(u) + h(−u) =
√

2

σ
e− 1

2 u

Now

κ(t) + κ(−t)+
∫ ∈
−∈

eit x h(x)dx +
∫ ∈
−∈

e−i t x h(x)dx

=
∫ ∈
−∈

eit x h(x)dx +
∫ ∈
−∈

eit x h(−x)dx −
∫ ∈
−∈

eit x

√
2

σ
e− 1

2 x2dx

= 2e− 1
2 t2 (8.12)

Ahsanullah (1989) gave the following characterization theorem using the above
lemma.

Theorem 8.2.6. Suppose X1, X2, . . . Xn(n ≥ 2) are n independent and identically
distributed random variables. Suppose L1 = a1X1 + · · · +an Xn , where a1, . . . , an

are constants, not all them are zero and X’s are symmetric around zero. Then if L2
1

is distributed as a chi-square with one degree of freedom, then X’s are normal.
Let ≡√

1(t) be the characteristic function of L1, then by Lemma 8.1,

2e− 1
2 t2 = ≡√

1(t) + ≡√
1(−t)

=
n∏

j=1

κ(a j t) +
n∏

j=1

κ(−a j t)

where ≡(t) is the characteristic function of X ≤
i s, i = 1, . . . , n

= 2
n∐

j=1
κ(a j t) by the symmetry of the X’s.

It is known (Linnik and Zinger (1955) that if ≡1(t),≡2(t) . . . ,≡n(t) are character-
istic functions and a1, a2, . . . an are positive constants, then if

(κ1(t))
a1(κ2(t))

a2 . . . . . . (κn(t))an = e−[iμt− π2 t2
2 ]∑n

i=1 an ,

−∈ < μ < œ, π > 0 for |t | < γ, γ > 0. holds if then ≡1(t), . . . ≡n(t) are
the characteristic function of normal distribution. Then it follows that ≡(t) is the
characteristic function of a normal distribution.
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Remark 8.2.3. Taking a1 = a2 = · · · = an = 1→
n
, it follows from the above

theorem that n X̄2 is distributed as chi-square with one degree of freedom and X’s
are symmetric around zero imply the normality of the X’s.
The following Theorem (Ahsanullah 1990) gives a characterization of normal

distribution using chi-square distribution.

Theorem 8.2.7. Let X1 and X2 be two independent and identically distributed ran-
dom variables. Suppose L1 = aX1 + →

1 − a2X2, 0 < |a| < 1, and assume L2
1 and

X2
1 are each distributed as chi-square with one degree of freedom, this X1 and X2

are normally distributed.

Proof. Let κ(t) be the characteristic function of X1, then 2e− 1
2 t2 = ≡(at)κ

(
→
1 − a2t)+κ(−at) + κ(−→

1 − a2t) and 2e− 1
2 t2 = ≡(t) + ≡(−t)

Then ≡(at)≡→
1 − a2t) = e− 1

2 t2

It is known (Linnik and Zinger (1955) that if ≡1(t),≡2(t) · · · ,≡n(t) are charac-
teristic functions and a1, a2, . . . an are positive constants, then if

(κ1(t))
a1(κ2(t))

a2 . . . (κn(t))
an = e

−
(

iμt− π2 t2
2

)∑n
k=1 ak (8.13)

where −∈ < μ < ∈, π < 0 and i = →−1, holds for all |t| < γ, for all γ > 0, then
κ1(t), . . . , κn(t) are characteristic functions of normal distributions. Thus κ(t) is
the characteristic function of a normal distribution and X’s are normally distributed.
Ahsanullah and Hamedani (1988) proved the following theorem.

Theorem 8.2.8. If X1 and X1 be independent and identically distributed symmetric
(about zero) random variables with pdf f (·) and let Z = min(X1, X2). If Z2 is
distributed as chi-square with one degree of freedom. then X1 and X2 are normally
distributed.

Proof. Let ≡(t) be the characteristic function of Z, then ≡(t) = 2
∫∈
−∈ eitx F̄(x)

f (x)dx , where

F̄(x) = 1 − F(x) and F(x) =
∫ x

−∈
f (u)du.

Hence

≡(t) + ≡(−t) = 4
∫ ∈

−∈
cos(t x)F̄(x) f (x)dx

= 4
∫ ∈

0
cos(t x)(1 − F(x)) f (x)dx

+ 4
∫ ∈

0
cos(t x)F(x) f (x)dx

= 4
∫ ∈

0
cos(t x) f (x)dx (8.14)
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= 2
∫∈
−∈ cos(t x) f (x)dx (by the symmetric property of f (x))

= 2κX (t), where κX (t) is the characteristic function of X.

By Lemma 2.3, ≡(t) + ≡(−t) = 2e− t2
2 , and hence κX (t) = e− t2

2 .
Thus the common distribution of X1 and X2 is normal.

Remark 8.2.4. It is easy to see that we can replace in Z the min by the max.
The following two theorems were proved by Ahsanullah (1989).

Theorem 8.2.9. Let X1 and X2 be independent and identically distributed random
variables and
Suppose

Z1 = a1X1 + a2X2

Z2 = b1X1 + b2X2

Such that

−1 < a1, a2 < 1,−1 < b1, b2 < 1, 1 = a2
1 + a2

2 = b21 + b22

and a1b2 + a2b1 = 0.
If z21 and z22 are each distributed as chi-square with one degree of freedom, then

X1 and X2 are normally distributed.

Proof. Let ≡3(t) and ≡4(t) be the characteristic functions of Z1 and Z2 respectively.
Then we have

κ1(t) + κ1(−t) = 2e− 1
2 t2 = κ2(t) + κ2(−t)

Now if ≡(t) is the characteristic function of X, then

≡3(t) = ≡(a1t)≡(a2t), while ≡4(t) = ≡(b1t)≡(b2t). (8.15)

Substituting b1 = −a1b2 | a2 and using the relation a2
1 + a2

2 = 1, we must have
a2
2 = b22, Taking a2 = b2 or a2 = −b2 and writing ≡3(t),≡4(t) in terms of ≡(t), we
get on simplification

≡(a1t)≡(a2t) + ≡(−a1t)≡(−a2t)

= ≡(−a1t)≡(−a2t) + ≡(a1t)≡(−a2t)

= 2e−( 12 )t2 , for all t,−∈ < t < ∈. (8.16)

From (8.16) we obtain directly

(≡(a1t) + ≡(−a1t))(≡(a2t) + ≡(−a2t)) = 4e− t
2
2

(8.17)
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(≡(a1t) − ≡(−a1t))(≡(a2t) − ≡(−a2t)) = 0 (8.18)

for all t,−∈ < t < ∈. From (8.18) it follows that we must have ≡(t) = ≡(−t)
for all t. Thus

≡(ai t)≡(a2t) = e− t
2
2
. (8.19)

Hence by Cramer’s theorem X1 and X2 are normally distributed.

Theorem 8.2.10. Let X1 and X2 be independent and identically distributed random
variables and suppose U = aX1 + bX2 such that 0 < a, b < 1 and a2 + b2 = 1. If
U 2 and X2

1 are each distributed as chi-square with one degree of freedom, then X1
and X2 are both distributed as normal.

Proof. Let κ1(t) and κ(t) be the characteristic function of U and X1 respectively.
Then by lemma 8.1, we have

2e− 1
2 t2 = κ1 (t) + κ1 (−t)

= κ (at) κ (bt) + κ (−at) κ (−bt)

= κ (t) + κ (−t) , (8.20)

for all t.
From (8.20), we have

κ (at) + κ (−at) = 2e
−(1/2 )a2t2 ,

κ (bt) + κ (−bt) = 2e
−(1/2 )b2t2

and hence
(κ(at) + κ(−at))(κ(bt) + κ(−bt)) = 4e−(1/2)t2 (8.21)

We have also
(κ(at) − κ(−at)) (κ(bt) − κ(−bt)) = 0 (8.22)

Since (8.22) is true for all t, −∈ < t < ∈, we must have
κ(t) = κ(−t) for all t, −∈ < t < ∈.
Hence we obtain

κ (at) κ (bt) = e−(1.2)t2 , for all t, −∈ < t < ∈. (8.23)

By Cramer’s theorem it follows that X1 and X2 are normally distributed.
The following theorem is due to Ahsanullah et al. (1991).

Theorem 8.2.11. Suppose X1, X2, . . . , Xn be n independent and identically distrib-
uted random variables for some fixed n, (n ≥ 2). Let T1 =∑n

i=1 X2
i and T2 = n X̄2.
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If T1 and T2 are distributed as chi-squares with n and 1 degrees of freedom, then
X1’s, i = 1, 2, . . . are N (0, 1).

Proof. Let φ2(t) be the characteristic function of
→

n X̄ , then by Lemma 8.3.

φ2 (t) φ2 (−t) = 2e−(1/2 )t2 .

Now φ2(t) =
(
φ
(

t→
n

))n
, where φ(t) is the characteristic function of t. Thus we

have

2e−(1/2 )t2 = φ2 (t) + φ2 (−t) =
(

φ

(
t→
n

))n

+
(

φ

( −t→
n

))n

i.e., 2e
−
(
1
2

)
nt2 = φ2

(→
nt
)

+ φ2
⎧→−nt

⎨ = (φ (t))n + (φ (−t))n . (8.24)

Since X2
i (i = 1, 2, . . . , n) is distributed as a chi-square with one degree of freedom,

we have

2e
−
(
1
2

)
t2 = φ (t) + φ (−t)

and hence
2e−(1/2 )nt2 = φ

(→
nt
)

+ φ
(
−→

nt
)

. (8.25)

Now e−(1/2 )nt2 =
(

φ(t)+φ(t)
2

)n
, and therefore

2 =φ
⎧→

nt
⎨+ φ

⎧−→
nt
⎨

(
φ(t)+φ(−t)

2

)n =
(

2φ (t)

φ (t) + φ (−T )

)n

+
(

2φ (−t)

φ (t) + φ (−t)

)n

for all t. (8.26)

Thus we have

φ(
→

nt) + φ(−→
nt)

2
=
(

φ(t) + φ(−t)

2

)n

= (φ(t))n + (φ(−t))n

2
for n ≥ 2.

Since
(

φ(t)+φ(−t)
2

)n = (φ(t))n+(φ(−t))n

2 for some fixed n ≥ 2 and all t and further

φ(t) ∀= 0 and φ(t) ∀= 1, hence φ(t) = φ(−t) and x’s are symmetric around zero.
Thus

φ (t) = ⎧φ ⎧→nt
⎨⎨1/n

, for all t. (8.27)
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= (φ (nt))1/n2 =
(
φ
(

nkt
))1/n2k

=
(
φ
(

t
→

N
))1/N

, N = (n)2k, k ≥ 1. (8.28)

Since the X’s have zero mean and unit variance, writing φ (t) = 1− t2
2 +ς (t), where

ς (t)/t2 ∃ 0 as t ∃ 0, we have

φ (t) = limN∃∈
(

1 − t2

2N
+ ς

(
t→
N

))N

= e− 1
2 t2

Thus X’s are normal. The proof is complete.

The result of the following theorem has lots of application in statistical inferences.

Theorem 8.2.12. Let X1, X2, . . . , Xn be a simple random sample from a normal
population with pdf f(x). Then the sample mean X

⎧= 1
n

∑n
k=1 Xk

⎨
and sample vari-

ance S2
(

= 1
n

n∑

k=1

⎧
Xk − X

⎨2
)

are independent if and only if the distribution of the

X’s is normal.

Proof. The proof of necessity.
Suppose Xi , i = 1, 2, . . . , n, is distributed as normal with mean= μ and variance

= π 2. The joint pdf of Xi , i = 1, 2, , . . .., n is

fX (x1, x2, . . . , xn) = 1

(2σ)n/2 π n
e
− 1

2

∑n
I=1

(
xi −μ

π

)2

Let us make the following transformation

Y1 = X

Y2 = X2 − X

Y3 = X3 − X

. . . . . . . . . . . . .

Yn = Xn − X

The jacobian of the transformation is n. We have
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n⎩

i=1

(
Xi − μ

π 2

)2
= 1

π 2 [⎧X1 − X
⎨2 +

n⎩

i=2

⎧
Xi − X

⎨2 + n
⎧
X − μ

⎨2]

= 1

π 2 [(
n⎩

i=2

⎧
Xi − X

⎨2 +
n⎩

i=2

⎧
Xi − X

⎨2 + n
⎧
X − μ

⎨2]

= 1

π 2



⎛

⎝
n⎩

i=2

Yi

⎞2

+
n⎩

i=2

Y 2
i + nY 2

1

⎠



The joint pdf of Y1. . . ,Yn is

fY (y1, y2, . . . , yn) = n

(2σ)n/2 π n
e− 1

2π2
[∑n

i=2 y2i +(
∑n

i=2 yi )
2+nY 2

1 ]
,

− ∈ < yi < ∈, i = 1, 2, . . . , n

Thus Y1(= X) is independent of Y2, . . .,Yn .

Now

nS2 =
n⎩

k=1

(Xk − X)2 =
n⎩

k=2

Y 2
k + (

n⎩

k=2

Y )2.

Thus X and S2 are independent.

The proof of the sufficiency.
Let the characteristic function, κ(t), of the distribution is given by κ(t) = ∫ eitx

f (x)dx .
The joint characteristic function of the statistics X and S2 is given by

κ(t1, t2) =
∫

· · ·
∫

, eit1x+i t2s2 f (x1) . . . f (xn)dx1 . . . dxn

The characteristic function of the mean X is

κ1(t1) = κ(t1, 0) =
∫

· · ·
∫

, eit1x f (x1) . . . f (xn)dx1 . . . dxn

and the characteristic function of the variance S2 is given by

κ2(t2) = κ(0, t2) =
∫

· · ·
∫

, eit2s2 f (x1) . . . f (xn).

The independence of the distribution of X and S2 means in terms of the characteristic
function

κ(t1, t2) = κ1(t1)κ2(t2).
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Using the fact X = 1
n

∑n
j=1 X j , we can write

κ1(t1) = n
β

k=1

∫
eit1xk/n f (xk)dxk = (κ(t1/n))n

We have

d

dt2
κ(t1, t2) |t2=0

=
∫

· · ·
∫

is2eit1x1/n · · · eit1xn/n f (x1) · · · f (xn)dx1 · · · dxn

= i(κ(t1/n))n−1E(s2)

= n − 1

n
iπ 2(κ(t1/n))n−1,

where π 2 is the variance of the X’s.
Using the relation d

dt2
κ (t1, t2)

⎪
⎪t2=0 = κ1 (t1)

d
dt2

κ2 (t2)
⎪
⎪t2=0, we obtain

∫ · · · ∫ is2eit x̄ f (x1) . . . f (xn) dx1 . . . dxn

= n−1
n iπ 2

∫ · · · ∫ eit x̄ f (x1) . . . f (xn) dx1 . . . dxn

Now s2 = 1
n

n∑

i=1
(x1 − x̄)2 = 1

n [ n−1
n

n∑

i=1
x2i − 1

n

n∑

i, j=1,i ∀= j
xi x j .

We have

d

dt
κ(t) = κ≤ (t) = i

∫
xeitx f (x) dx,

and
d2

dt2
κ (t) = κ≤≤ (t) = −

∫
x2eitx f (x) dx,

Thus we can write the following differential equation

κ≤≤ (t) (κ(t))n−1 − ⎧κ≤ (t)
⎨2

(κ (t))n−2 = π 2κ(t)n

Sinceκ(0) = 1 andκ(t) is continuous, there exist a neighborhood around zerowhere
κ(t) is not zero. Now restricting t in that region, we can write

κ≤≤(t) − (κ≤(t))2(κ(t))−1 = π 2κ(t)

i.e
κ≤≤(t)
κ(t)

− (κ≤(t))2

(κ(t))2
= −π 2
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We can write the above equation as

d2

dt2
lnκ(t) = −π 2.

The solution of the above equation is κ(t) = eat+bt2 , where a and b are constants.
Using the condition E(X) = μ and Var(X) = π 2, we have

κ(t) = eiμt− 1
2 π 2t2 .

Thus X is normally distributed.
We have presented here the proof of the sufficiency given by Lukacs (1942). Geary

(1934) was the first to prove the sufficiency of the theorem.
We know that if X1 and X2 are distributed as N(0, 1), then the ratio X1/X2 is

distributed as Cauchy with median zero (C(0)). The following example shows that
the converse is not true.

Example 8.2.2. Consider the following density function.

f (x) = 21/2

σ(1 + x4)
,−∈ < x < ∈.

Then X1/X2 is C(0).
It is natural to ask that if X1 and X2 are i.i.d and X1/X2 is distributed as C(0),

what additional condition will guarantee the normality of X1 and X2. The following
theorem (Ahsanullah and Hamedani (1988) gives an answer to the question.

Theorem 8.2.13. Let X and Y be independent and identically distributed random
variables with absolutely continuous (with respect to Lebesguemeasure) distribution
function and let Z = min (X,Y). If Z2and X/Y are distributed as chi-square with one
degree of freedom and C(0) respectively, then X and Y are distributed as standard
normal.

Proof. Let f(x) be the pdf of X. Since X/Y is distributed as C(0), we have

∫ ∈

−∈
f (uv) f (v)|v|dv = 1

σ(1 + u2)
,−∈ < u < ∈.

Or
∫ ∈

0
[ f (uv) f (v) + f (−uv) f (−v)]vdu = 1

σ(1 + u2)
,−∈ < u < ∈..

Now letting u ∃ 1 and u ∃ −1, we obtain respectively
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∫ ∈

0
[( f (v))2 + ( f (−v))2]vdu = 1

2σ
(8.29)

and ∫ ∈

0
2 f (v) f (−v)vdu = 1

2σ
(8.30)

From (8.29) and (8.30) it follows that

∫ ∈

0
[( f (v) − f (−v))2]vdu = 0 (8.31)

Hence f(v) = f(−v) for almost all v, v< ∈. Thus f(x) is symmetric and hence the
conclusion follows from Theorem 8.2.8.

8.3 Summary

Aprobability distribution can be characterized through variousmethods. The purpose
of this chapter was to discuss various characterizations of normal distribution. It is
hoped that the findings of the chapter will be useful for researchers in different fields
of applied sciences.



Chapter 9
Characterizations of Student’s t Distribution

9.1 Introduction

As pointed out in Chap.8, characterization of a probability distribution plays an
important role in probability and statistics. In this chapter, we will present some
characterizations of Student’s t distribution.

9.2 Characterizations of Student’s t Distribution

Student’s t distributions have been widely used in both the theoretical and applied
work in statistics. In this section,wewill consider some characterizations of Student’s
t distribution.

The probability density function of the t-distribution with v degrees of freedom
is given by

fv(x) = σ
( v+1

2

)

→
vπσ

( v
2

)
(

1 + x2

v

)−(v+1)/2

,−∈ < x < ∈. (9.1)

We will denote Student’s t distribution with v degrees of freedom as tv distribution.
In this chapter We will present some characterizations of Student’s t-distribution.

For v = 1, the pdf of t1 is given by

f1(x) = 1

π(1 + x2)
,−∈ < x < ∈.

This is a the standard Cauchy (C(0)) distribution. The following are some of the
characteristic properties of standard Cauchy distribution.
If X is distributed as C(0), then

M. Ahsanullah et al., Normal and Student’s t Distributions and Their Applications, 129
Atlantis Studies in Probability and Statistics 4, DOI: 10.2991/978-94-6239-061-4_9,
© Atlantis Press and the authors 2014
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(i) 1/X is also distributed as C(0).
(ii) 2X/(1 − X2) is also distributed as C(0),

However identical distribution of X and 1/X does not characterize the Cauchy dis-
tribution (C(0)). The identical distribution of X and 2X/(1 − X2)

Characterizes the distribution C(0). If X1 and X2 are two independent and identically
distributed continuous random variables, then any one of following two conditions
(see Arnold, (1979)) characterize the standard Cauchy distribution.

(i) X1 and (X1 + X2)/(1 − X1X2) are independent,
(ii) X1 and (X1 + X2)/(1 − X1X2) are identically distributed,

The pdf of t2 distribution is as given below:

f2(x) = 1

(2 + x2)
3
2

, (9.2)

and the corresponding cdf is

F2(x) = 1

2

(

1 + x→
2 + x2

)

(9.3)

Several characterizations of t2 distribution based on regression properties of order
statistics were obtained in Akundov et al. (2004); Balakrishnan andAkundov (2003);
Nevzorov et al. (2003).

It is interesting to note that t2 distribution is a member of a general family of
distribution satisfying the relation

(F(x))(1 − F(x))κ = c f (x), (9.4)

where c is a constant. The logistic distribution satisfies the relation with κ = 1, the
uniform distribution satisfies the relationwith α = 0 and the squared sign distribution
with cdf F(x) = sin2(x), 0 ∀ x ∀ π/2 satisfies the relation with α = 1/2. Here we
will present a characterization of t2 distribution as given by Nevzorov et al. (2003)
in Theorem 9.1 satisfying the relation (9.4) with α = 3/2.

Theorem 9.2.1. Suppose that X1, X2 and X3 are independent and identically distrib-
uted with cdf F(x) and pdf f(x). Let X1,2 ∀ X2,3 ∀ X3,3 be the corresponding order
statistics. Further let W3 = (X1,3 + X3,3)/2 and M3 = X2,3. Then
E(W3|M3 = x) = x , where α < x < γ, α = inf{x |F(x) > 0}, γ = sup{x}F(x) <

1} if and only if

F(x) + F2

[
x − μ

φ

]

,−∈ < x < ∈, φ < 0,

where F2(.) is the cdf as given in (9.3).
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Proof.
E(W3|M3 = x) = x

i.e. E

(
X1,3 + X2,3

2
+ X2,3

2
|X2,3 = x

)

= 3x

2

and
E(X |X2,3 = x) = x or E(X1|X2,3 = x) = x

For t2 distribution,

E(X1|X2,3) = 1

3

{

x + 1

F2(x)

∫ 0

−∈
u f (u)du + 1

1 − F2(x)

∫ ∈

0
u f (u)du

}

,

where F2(x) = 1
2

(
1 + x→

2+x2

)

We have
1

F2(x)

∫ x

−∈
u f2(u)du = x − 1

F2(x)

∫ ∈

x
F2(u)du,

1

1 − F2(x)

∫ x

−∈
u f2(u)du = x + 1

1 − F2(x)

∫ ∈

x
F2(u)du,

Thus

E(X1|X2,3) = x − 1

3

{
1

F2(x)

∫ 0

−∈
F2(u)du − 1

1 − F2(x)

∫ ∈

0
(1 − F2(u))du

}

.

But

− 1

F2(x)

∫ x

−∈
F2(u)du + 1

1 − F2(x)

∫ ∈

x
(1 − F2(u))dy = 0

Hence for t2 distribution
E(W3|M3 = x) = x .

We now prove the sufficiency condition.

E(W3|M3 = x) = x implies

E(X1|X2,3 = x) = x,

E(W3|M3 = x) = x implies

1

F(x)

∫ x

−∈
F(u)du − 1

1 − F(x)

∫ ∈

x
(1 − F(u))du = 0 (9.5)
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The Eq. (9.5) is equivalent to

(1 − F(x))

∫ x

−∈
F(u)du − F(x)

∫ ∈

x
(1 − F(u))du = 0

or
d

dx

[∫ ∈

x
(1 − F(u))du

∫ x

−∈
F(u)du

]

= 0.

Thus we have ∫ x

−∈
F(u)du

∫ ∈

x
(1 − F(u))du = c (9.6)

where c is a constant. We can write the Eq. (9.6) as

∫ ∈

x
(1 − F(u))du = c

⎧ x
−∈ c, F(u)du

Differentiating the above equation with respect to x, we obtain

1 − F(u) = cF(x)
(
⎧ x
−∈F(u)du

)2 ,

which is equivalent to

∫ x

−∈
F(u)du =

(
cF(x)

(1 − F(x))

)1/2.

Differentiating the above equation with respect to x, we obtain

{F(x)(1 − F(x))}3/2 = c f (x), c > 0. (9.7)

Let G(x) be the inverse function of F(x) such that F(G(x)) = x, 0 < x<1,
we obtain from (9.7)

(u(1 − u))3/2 = c f (G(x)), 0 > x < 1. (9.8)

Since d
dx G(x) = 1

f (G(x))
, the general solution of (9.8) is

G(x) = d +
∫ x

1/2

du

(u(1 − u))3/2
, c > 0 and,−∈ < d < ∈.

We have G(0) = α = −∈ and G(1) = γ = ∈, hence



9.2 Characterizations of Student’s t Distribution 133

G(x) = 2x − 1

2
→

x(1 − x)
, 0 < x < 1 (9.9)

The inverse of G(x) is

F(x) = 1

2

(

1 + x→
1 + x2

)

,−∈ < x < ∈. (9.10)

So we have

F(x) = F0

(
x − μ

φ

)

= 1

2

⎨

1 + x − μ
⎩{φ 2 + (x − μ)2}

}

,−∈ < x < ∈, −∈ < μ < ∈, φ > 0.

We now consider t3 distribution.
The pdf of t3 distribution is given by

f3(x) = 2

π
→
3
(
1 + x2

3

)2 ,−∈ < x < ∈. (9.11)

The following characterization Theorem (Theorem 9.2) is due to Akundov and
Nevzorov (2010).

Theorem 9.2.2. Suppose that X1,X2 and X3 are independent and identically distrib-
uted with cdf F(x) and pdf f(x). We assume that E(X2

1) < ∈. We assume without
any loss of generality E(X) = 0 and E(X2

1) = 1. Let X1,2 ∀ X2,3 ∀ X3,3 be the
corresponding order statistics. Then the following conditions are equivalent.

(a) E((X2,3 − X1,3)
2|X2,3 = x)

= E((X3,3 − X2,3)
2|X2,3 = x) a.s.

(b) F(x) = F3

(
x−μ

ς

)

,−∈ < x < ∈, φ > 0,
(9.12)

where F3(.) is the t3 distribution with the pdf given in (9.11).

Proof. We can rewrite (9.12) as

2xE(X3,3|X2,3 = x) − 2xE(X1,3,|X2,3 = x)

= E(X2
3,3|X2,3 = x) − E(X2

1,3|X2,3 = x)
(9.13)

We know that

E(X1:3|X2:3 = x) = 1

F(x)

∫ x

−∈
td F(t).
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and

E(X3:3|X2:3 = x) = 1

1 − F(x)

∫ ∈

x
td F(t).

Using these results we obtain from (9.13) that

2x

1 − F(x)

∫ ∈

x
td F(t) − 2x

F(x)

∫ x

∈
td F(t)

= 1

1 − F(x)

∫ ∈

x
t2d F(t) − 1

F(x)

∫ x

∈
t2d F(t)

If we define

I (x) =
∫ x

−∈
td F(t) and R(x) = 1

1 − F(x)

∫ x

−∈
t2d F(t).

Then we have
∫ ∈

x
td F(t) = −I (x) and

∫ ∈

x
t2d F(t) = 1 − R(x)

It follows immediately that

∫ ∈

t
td F(t) = I (x) and

∫ ∈

t
t2d F(t) = 1 − R(x) (9.14)

since E(X) = 0 and E(X2) = 1. Now we can write

2x I (x)

(
1

1 − F(x)
+ 1

F(x)

)

= 1

1 − F(x)
− R(x)

(
1

1 − F(x)
+ 1

F(x)

)

or
R(x) = F(x) + 2xl(x). (9.15)

Differentiating (9.15) with respect to x, we obtain

x2 f (x) = f (x) + 2I (x) + 2x2 f (x)

or
− 2l(x) = f (x) + x2 f (x). (9.16)

Since the left-hand side of (9.16) is differentiable it follows that f(x) is also differ-
entiable and then differentiating (9.16) with respect to x, we obtain
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−2x f (x) = f ∞(x) + 2x f (x) + x2 f (x)

Or
f ∞(x)

f (x)
= −4x

1 + x2
(9.17)

Upon solving the differential equation in (9.17), we arrive at

f (x) = 2

π
(
1 + x2

)2 (9.18)

Note that if X has the probability density function given by (9.18), then the random
variable
Y = →

3 X has the Student’s t3 distribution as given by

f3(x) = 1

π
→
3

(

1 + x2

3

)−2

Since we restricted ourselves so far to E(x) = 0 and E(x2) = 1, it is clear that
considering now arbitrarily expected value (μ) and variance (φ 2) we arrive on the
result of theorem that (a) ≤ (b)

Next, looking at the steps above, it can be readily checked that (b) ≤ (a). The
proof of the theorem is complete.

Remark 9.2.1. The characterization result established in this theorem can equiva-
lently be stated in terms of variances of the left-truncated and right-truncated random
variables, i.e. the theorem holds if we replace its condition (a) by the condition

Vac(X1:3X |2:3 = x) − Var(X3:3|X2:3 = x)

= E(X3:3X1:3|X2:3 = x)[E(X3:3 + X1:3|X2:3 = x) − 2x].

Let Q(x) be the quantile function of a random variable X with cdf F(x), i.e. F(Q(x)
= x, 0 < x < 1. Akundov et al. (2004) proved that for 0 < x < 1, the relation

E(βX2,3 + (1 − β)X3,3|X2,3 = x) = x . (9.19)

Characterizes a family of distributions with quantile function

Qβ(x) = c(x − β)

β(1 − β)(1 − x)βx1−β
+ d, 0 < x < 1, (9.20)

where 0 < c < ∈,−∈ < d < ∈. Let us call this family of distribution as Q
family.
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Theorem 9.2.3. (Q family) Assume that E|X| < ∈ and n ∃ 3 is a positive integer.
The random variable X belongs to the Q family if for some k, 2 ∀ k ∀ n − 1 and
β, 0 < β < 1,

βE

⎛
1

k − 1

k−1⎝

i=1

(Xk,n − Xi,n|Xk,n = x

⎞

= (1 − β)E

⎠

 1

n − k

n⎝

j=k+1

(X j,n − Xk,n|Xk,n = x

⎪



(9.21)

Proof. The Eq. (9.21) can be written as

βE

⎛
1

k − 1

k−1⎝

i=1

Xi,n|Xk,n = x

⎞

+ (1 − β)E

⎠

 1

n − k

n⎝

j=k+1

(X j,n|Xk,n = x

⎪

 = x (9.22)

Clearly for n = 3 and k = 2 Eq. (9.22) reduces to (9.20).
Q family with different values of β approximates well member of common distribu-
tion including Tukey’s Lambda, Cauchy and Gumbel (for maximum). t2 distribution
belongs to the Q family having quantile function (9.20) with

Q1/2(x) = 21/2(x − 1/2)

(x(1 − x))1/2
, 0 < x < 1.

A generalization of Theorem 9.1 can easily be established by considering 2n+1

samples and using the condition E(X/M2n+1 = x) = x , where X = 1
2n+1

2n+1∑

j=1
X j

and M2n+1 = [X1,2n+1 + X2n+1,2n+1]/2.
The following Theorem 9.2.4 (See Yanev and Ahsanullah (2012)) is a generalization
of Theorem 9.2.3.

Theorem 9.2.4. Assume that the random variable X has cdf F(x) with E(X2) < ∈.
Let v ∃ 3 and n ∃ 3 positive integers. Then

F(x) = Fv

(
x − μ

φ

)

. for − ∈ < μ < ∈, σ > 0. (9.23)

where Fv(.) is the t distribution with v degrees of freedom, if and only if
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E

⎛
1

k − 1

k⎝

i=1

(
v − 1

2
Xk,n − (v − 2)Xi,n

)
)2

|Xk,n = x

⎞

= E

⎠

 1

n − k

k⎝

j=1

(
(
v − 2)X j,n

)− v − 1

2
Xk,n

)2
|Xk,n = x

⎪

 (9.24)

To prove the theorem, we need the following two lemmas.

Lemma 9.2.1. The cdf F(x) of a random variable X with quantile function (9.20) is
the only continuous cdf solution of the equation

(F(x))β−1(1 − F(x))1+β = cF ∞(x), c > 0. (9.25)

Lemma 9.2.2. Let v ∃ 1, n ∃ 2, integers. Then

1

k − 1

k−1⎝

i=1

E([Xr
i,n|Xk,n = x] = 1

F(x)

∫ x

−∈
tr d F(t), 2 ∀ k ∀ n, (9.26)

and

1

n − k

k−1⎝

j=1

E([Xr
j,n|Xk,n = x) = 1

1 − F(x)

∫ ∈

x
tr d F(t), 1 ∀ k ∀ n − 1. (9.27)

Proof. Using the formulas of the conditional density of X j,n given Xk,n = x( j < k)

(see Ahsanullah and Hamedani (2010), p.13, Ahsanullah and Nevzorov (2001), p.3
and Ahsanullah et al. (2013)), we obtain for r > 1

1

k − 1

k−1⎝

j=1

E(Xr
j,n|Xk,n = x

= 1

k − 1

k − 1

(F(x))k−1

k−1⎝

j=1

(
k − 2

j − 1

)∫ x

−∈
(F(t)) j−1(F(x) − F(t))k−1− j tr d F(t)

= 1

[F(s)]k−1

k−2⎝

i=0

(
k − 2

i

)∫ x

−∈
[F(t)]i [F(x) − F(t)]k−2−i tr d F(t)

= 1

F(x)

∫ x

−∈
tr d F(t)

This verifies the relation (9.26). The relation (9.27) can be proved similarly.
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Proof of Theorem 9.2.4. First we prove (9.21) implies (9.20). Applying Lemma
(9.2) for the left hand side of Eq. (9.22), we obtain

β

k−1⎝

j=1

E(Xj,n|Xk,n = x) + 1 − β

n − k

n⎝

j=k+1

E([Xj,n|Xk,n = x].

= β

F(x)

∫ x

−∈
t F(t)+ 1 − β

1 − F(x)

∫ ∈

x
t F(t) (9.28)

Since that E(|X|) < ∈, we have

lim
x≤−∈ x F(x) = 0 and lim

x≤∈ x[1 − F(x)] = 0. (9.29)

Therefore integrating by parts, we obtain from (9.28)

= β

F(x)

∫ x

−∈
t F(t)+ 1 − β

1 − F(x)

∫ ∈

x
t F(t)

= x − β

F(x)

∫ x

−∈
F(t)dt+ 1 − β

1 − F(x)

∫ ∈

x
(−F(t))dt (9.30)

Thus, from Eqs. (9.28) and (9.30), it follows from Eq. (9.21) is equivalent to

β(1 − F(x))

∫ x

−∈
F(t)dt = (1 − β)F(x)

∫ ∈

x
(1 − F(t))dt

The above equation can be written as

− β

1 − β

∫ x

−∈
F(t)dt

d

dx

∫ ∈

x
(1 − F(t))dt =

∫ ∈

x
(1 − F(t))dt

d

dx

∫ x

−∈
F(t)dt

which leads to
∫ x

−∈
F(t)dt = c(

∫ ∈

x
(1 − F(t))dt)−β/(1−β), x > 0

Differentiating both sides of the above equation with respect to x, we obtain

∫ ∈

x
(1 − F(t))dt) = c1

(
1

F(x)
− 1

)1−β

, x > 0

Differentiating one more time, we have

(F(x))2−β(1 − F(x))1+β = c2F ∞(x), c2 > 0, (9.31)

which is Eq. (9.25). Referring to Lemma 9.1, we see that (9.21) implies (9.20).
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To complete the proof of the theorem it remains to verify that F(x) with quantile
function (9.20) satisfies Eq. (9.21). Differentiating Eq. (9.20) with respect to x, we
obtain

Q∞
β(x) = c(1 − x)−(1+β)x−(2+β), c > 0,

On the other hand, since F(Q(x)) = x, we have Q∞(x) = F ∞(Q(x))−1.
Note that the left hand side is differentiable so is the right hand side. Therefore

(1 − x)1−βx2−β = cF ∞(Qβ(x))

which is equivalent to Eq. (9.30) and then to Eq. (9.21).

Proof of Theorem 9.2.4. The Eq. (9.21) can be written as

(v − 1)x





1

n − k

n⎝

j=k+1

E(X j,n|Xk,n − x) − 1

k − 1

k−1⎝

j=1

E(X j.n|Xk,n = x)

⎢




= (v − 2)





1

n − k

n⎝

j=k+1

E(X2
j,n|Xk.n − x) −

k−1⎝

j=n

E(X2
j,n|Xk,n = x)

⎢




Referring to Lemma 9.2, with r = 1 and r = 2, we see that this equivalent to

(v − 1)x

{
1

F(x)

∫ ∈

x
td F(t) − 1

F(x)

∫ x

−∈
td F(t)

}

= (v − 2)

{
1

1 − F(x)

∫ ∈

x
t2d F(t) − 1

F(x)

∫ x

−∈
t2d F(t)

}

(9.32)

If E(X) = 0 and E(X2) = 1. Then
∫ ∈

x
d F(t) = −

∫ ∈

−x
td F(t) and

∫ ∈

x
t2d F(t) = 1 −

∫ x

−∈
t2d F(t)

and the Eq. (9.32) is equivalent to

−(v − 1)x

{
1

1 − F(x)
+ 1

F(x)

}∫ x

−∈
td F(t)

= v − 2

1 − F(x)
− (v − 2)

{
1

1 − F(x)
+ 1

F(x)

}∫ x

−∈
t2d F(t)

Multiplying both sides of the above equation by F(x)(1−F(x)), we obtain

− (v − 1)x
∫ x

−∈
td F(t) = (v − 2)[F(x) − 1]

∫ x

−∈
t2d F(t)] (9.33)
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Differentiating both sides of the above equation, we have

−(v − 1)
∫ x

−∈
td F(t) = f (x)(x2 + v − 2)

Since the left hand side of the above equation is differentiable, we have f ∞(x) exists.
Differentiating with respect to x, we obtain

f ∞(x)

f (x)
= −v + 1

v − 2

x

1 + x2/(v − 2)

Integrating both sides of the equation and making use of the fact that f(x) is a pdf,
we have

f (x) = c

(

1 + x2

v − 2

)−(v−1)/2

,where c = σ((v + 1)/2)

σ(v/2)
→

(v − 2)π
(9.34)

It is not difficult to see that if Z has the pdf as given in (9.34), then

X = Z

√
v

v − 2

follows tv distribution with pdf as given in (9.1).
The following theorem (Theorem 9.2.5) gives a characterization of folded t3 distri-
bution based on truncated first moment.

Theorem 9.2.5. Suppose that the random variable X has an absolutely continuous

(with respect to Lebesgue measure) cdf F(x), with f (x) = 2
π

→
3

(
1 + x2

3

)−2
(folded

t3 distribution) if and only if E(X |X ∀ x) = g(x)τ (x), where g(x) = x2(x2+3)
6 and

τ(x) = f (x)
F(x)

is the reversed hazard rate.

Proof. Suppose that f (x) = 2
π

→
3

(
1 + x2

3

)−2
, x ∃ 0, then

g(x) =
⎧ x
0 x
(
1 + t2

3

)
dt

(
1 + x2

3

)−2 = 1

6
x2(x2 + 3)

Suppose g(x) = 1
6 x2(x2 + 3),

Then E(X |X ∀ x) = g(x)τ (x) implies that

∫ x

0
t f (t)dt = g(x) f (x) (9.35)

Differentiating (9.35) and using g(x) = 1
6 x2(x2 + 3), we obtain
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xf(x) = 1

6
x2(x2 + 3)f ∞(x) + 1

6
x(4x2 + 6) f (x) (9.36)

On simplification we obtain from (9.36)

f ∞(x)

f (x)
= − 4x

x2 + 3
(9.37)

On integrating (9.37) and using the fact f(x) is a pdf, we have

f(x) = 2

π
→
3
(1 + x2

3
)−2, x ∃ 0,

9.3 Summary

In this chapter, some characterizations of Student’s t distribution have been discussed.
It is hoped that the findings of this chapterwill be useful for the practitioners in various
fields of studies and further enhancement of research in the field of distribution theory
and its applications.



Chapter 10
Concluding Remarks and Some Future Research

The normal and Student’s t distributions are two of the most important distributions
in statistics. This book has reviewed the normal and Student’s t distributions, and
their applications. The sum, product and ratio for the normal distributions, and the
sum, product and ratio for the Student’s t distributions have been discussed exten-
sively. Their properties and possible applications are discussed. Some special cases
for each of the chapters are given. The distributions of the sum, product, and ratio of
independent randomvariables belonging to different families are also of considerable
importance and one of the current areas of research interest. This book introduces and
develops some new results on the distributions of the sum of the normal and Student’s
t random variables. Some properties are discussed. Further, a new symmetric distri-
bution has been derived by taking the product of the probability density functions
of the normal and Student’s t distributions. It is observed that the new distribution
is symmetric and carries most of the properties of symmetric distributions. Some
characteristics of the new distributions are presented. The entropy expression has
been given. The percentage points have also been provided. It is shown that the pdf
of the proposed distribution is unimodal. It is noted that for the degrees of freedom
v = 1, we obtain a new symmetric distribution which is the product of the standard
normal and Cauchy distributions and for large v we will obtain a distribution which
is the product of two standard normal densities. The percentage points of the new
distributions have also been provided. The characterizations of normal and Student’s
t are given. We hope the findings of the book will be useful for the practitioners in
various fields of sciences. Finally, the given references of the book will be a valuable
asset for those researchers who want to do research in these areas.
The purpose of this book was to provide the distribution of the sums, differences,

products and ratios of independent (uncorrelated) normal and student t random vari-
ables. Most of the recent works are reviewed. It appears that not much attention has
been paid to the distribution of the sums, differences, products and ratios of depen-
dent (correlated) student t random variables, and therefore needs further research
investigation. It is also evident that very little attention has been paid to the esti-
mates of parameters, inferential and prediction properties based the distribution of
the sums, differences, products and ratios of dependent (correlated) normal and
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student’s t random variables. Also, one can investigate the distribution of order
statistics and record values based on the distribution of the sums, differences, prod-
ucts and ratios of dependent (correlated) normal and student’s t random variables.
The inferential properties and prediction of future order statistics and record values
based on existing ones from the distribution of order statistics and record values based
on the distribution of the sums, differences, products and ratios of dependent (corre-
lated) normal and student t random variables are also open problems. We hope that
the materials of this book will be useful for the practitioners in various fields of stud-
ies and further enhancement of research on the distribution of the sums, differences,
products and ratios (quotients) of random variables and their applications.
Finally, as stated above, this book primarily provided the theoretical contributions

of normal and student’s t distributions and their possible applications. However, it
appears that not much attention has been paid to the estimates of parameters and
inferential properties based on the distribution of the sums, differences, products and
ratios of dependent (correlated) normal and student’s t random variables. Therefore,
we hope that, using a real world data, one can pursue further research based on
the results provided in this book, specially, parameter estimates, inferences about
the parameters, goodness-of-fit, and prediction of the future observations for these
distributions are open problems.
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